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1 Introduction

The concept of Quantum Computing (QC) was coined at the beginning of the 80’s decade of the
20th century. This concept encloses several possible variants or implementations of the same concept
among which, the quantum digital computer (QDC) is the most popular one. These computers
are based on a set of qubits that can be initialized to a certain initial ground state and that can
be operated through a set of well-know unitary operators (gates) that usually involve one or two
of these qubits. The system is programmed through a circuit composed of a certain combination
of these gates, designed to perform the required operation. Soon, QC will cooperate with classical
one in hybrid platforms where QC will play the role of an accelerator for some highly demanding
kernels. The development of real Quantum platforms nowadays is highly influenced by the existence
of high levels of noise that interfere their operation, current quantum platforms are called Noisy
Intermediate-State Quantum (NISQ).

This document presents a review of the state of the art work on benchmarking of QC platforms.
The document begins with a short overview of the main challenges faced by QC benchmarking (Sec.2).
Then, we cover the main performance metrics introduced by the community (Sec. 3). Then, we review
the main QC benchmarking works classified as: hardware-level (Sec.4), compiler level (Sec.5), full-
stack level (Sec.6) and application level (Sec.7). We finish with a short discussion 8.

2 Quantum Computing Benchmarking Overview

QC community is currently facing the challenging task of setting a benchmarking methodology for
a developing technology that is changing rapidly and where there is a big uncertainty regarding the
direction towards it will evolve. The previous experience with benchmarking in classical computing
shows that you can address this task targeting different levels of the software/hardware stack. This
pattern is being repeated with QC technology, but given its early stage of development, most of the
benchmarking approaches for QC target the hardware levels, that is, the quality of the qubits. We
have performed a revision of the state-of-the-art of QC benchmarking. There are several works where
QC benchmarking is correlated with classical computing benchmarking. The authors in [23] discuss
the challenges faced by a QC benchmark. The four most important factors are:

o Quantum platforms are more diverse than classical one. Firstly, there are different definitions
of QC (from adiabatic to fault-tolerant digital quantum computing). Secondly, the physical
substrate used for their implementation is diverse (transmon, ions, neutral atoms, etc.).

o Quantum hardware is less developed than classical one. Most systems have only a few qubits
and cannot perform useful applications. Current typical qubit count is less than 100, although
there are already systems with up to 433 qubits. Yet, it is not clear whether such high numbers
of qubits will be actually useful to address real-world tasks; indeed, some of the most common
quantum algorithms require up to millions of qubits [9].

o Quantum algorithms are still under development, and it is unknown what applications will be
the most useful.

e Quantum noise is not well understood, and it is difficult to simulate, thus, its characterization
is particularly challenging. There are many types of noise in QC, from the one related to single
qubit operations to cross-correlation or reading errors. Each device or technology is affected
by different kinds of errors, which can therefore have different impacts. In fact, as [23], maybe
a Quantum Processors should not be “considered as a monolithic system and their error rates
cannot be considered independently”.
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This last work [23] also study how to effectively assess the impact of quantum noise in a QC
platform, using different synthetic benchmarks (as Adder, QFT, quantum classifier or optimisation)
with different metrics (depending on the benchmark, it could be fidelity, accuracy or expectation
value), and conclude that “quantum noise is more complex and difficult to model than is often
assumed and has profound effects everywhere, and can be felt significantly even at higher levels of
the system stack. This complicates the task of benchmarking, which is already challenging and full of
subtlety for classical systems”. A general analysis of QC benchmarking is also performed in [3]. They
claim that this topic is currently a research topic, being too soon to establish metrics or standard
benchmarks, as we instead already have in classical computing. But these must be defined wisely,
because “a bad benchmarking can be worse that no benchmarking at all” (citing expert in classical
benchmarking, Mr. Dongarra). Additionally, IEEE has formed a work group [12] to define a quantum
benchmark framework, and a draft of their proposal is scheduled for 2023 .

3 Performance Metrics

Every benchmarking methodology uses one or several performance metrics to evaluate different as-
pects of the performance of a target platform. In the field of QC, some of the metrics that have been
defined are:

« Total Quantum Factor: This metric (introduced by [24]) is formulated as

TQF =T /tyng (1)

T} being the average coherence time for all qubits in the processor, ¢, the longest gate time in the
universal set, and n, the number of qubits in the chip. They claim that this metric estimates the
size of a quantum circuit that can be run in the processor before being affected by decoherence
phenomena. However, this metric does not include the topology of the qubits or the fidelity of
the gates, making its interest limited for the purpose of comparing the performance of NISQ
platforms.

o Q-score: This metric (introduced by [14]) assesses the behaviour of QAOA (a variational quan-
tum approximation algorithm) for MaxCut on a class of random instances. The results are
normalized in a smart way to factor out the purely random behaviour and thus compute the
true deviation of the algorithm with respect to a simple coin toss. The final score corresponds
to the number of qubits up to which the quantum processor’s behaviour is significantly different
from a random uniform sampling.

« gBAS: This metric (introduced by [1]) targets variational algorithms (it based on a data-driven
quantum circuit learning). It uses the classical Bars-and-Stripes test for classical generative
models. ¢BAS measures the capacity of a circuit to learn these patterns from an (n,m) pixels,
while it does not with non-BAS patters. The metric is based on the classical F1 metric of
classifiers.

« CLOPS: Circuit Layer Operations per Second. This metric (introduced by IBM© [5])) measures
the largest depth and number of qubits that can be executed by a quantum computer. It uses
synthetic benchmarks that try to assess the capacity of quantum computers to execute random
synthetic circuits. The main problem of this metric is that the result should be validated against
a classical simulation of such circuits, which can be unfeasible for large number of qubits.
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4 Hardware-level Benchmarks

There is a family of benchmarking methodology that focus on the physical low-level details of the
Quantum hardware. For instace, the authors in [17] present an early benchmarking suite which
comprises a set of small low-level programs as quantum adders or identity operations. They also
present the process to execute them and remark the need of having a benchmarking methodology.

The authors of [8] develops cycle benchmarking, “a rigorous and practically scalable protocol for
characterizing local and global errors across multi-qubit quantum processors”. Cycle Benchmarking
(CB) is a protocol for estimating the process fidelity of a global noise process affecting a quantum
device that occur when a cycle of operations is applied to a quantum register. It measures the
process fidelity of a Pauli-matrix based Clifford cycle, comparing an ideal G and a noisy G, executing
these unitary operations m; and msy times such that G™ = G™2 = I. Because it compares the
ideal output with the noisy implementation, CB needs to calculate this ideal result using classical
methods. However, the authors claim that this step can be done efficiently.

CB is proved as a robust protocol to SPAM (State Preparation and Measurement) errors.
Furthermore, the number of measurements required to estimate the process fidelity to a fixed precision
is approximately independent of the number of qubits. Fidelity corresponds to the effective error rate
under RC (randomized compiling, a technique that introduces independent random single-qubits
gates into the logic circuit, keeping the logic of the circuit [26]). The performance of the same
operation in a circuit without RC can differ significantly from the estimated fidelity of its constituents
due to the addition or cancellation of coherent errors. This is a general issue with performance metrics
for quantum operations and RC has been designed to eliminate these coherent errors. The protocol
also provides insight into how noise scales within a fixed architecture. Cycle benchmarking data
validates that the error rate per single-qubit gate and per two-qubit coupling does not increase with
increasing system size. Also, they have studied the variation with time of the fidelity due to drifts
in the computer, providing a method to calculate the necessary frequency for the calibration to the
purpose of keeping the fidelity within a 1% error.

Randomized Model Circuits[5] are presented as an evolution of IBM volumetric benchmarks.
This means that, in volumetric benchmarks, the performance of a Quantum platform is assessed
through a set of predefined volumetric benchmarks. In this case, they use what it is called random
synthetic circuits. The aim of this benchmarking is to assess the effects of quantum noise. For
this, the authors create a methodology to generate random synthetics circuits whose output can be
validated against a model generated one. One important difference of this paper with respect to our
intended approach is that this benchmark is not application-focused as it attempts to stress physical
and functional aspects of quantum platforms through synthetic benchmarks but not using real-life
applications

pyGSTi[20] is a toolset defined to make quantum characterization, verification, and validation
(QCVV) of processors. It characterises the qubits and can execute several benchmarks, as the
randomized benchmark. It helps to characterize the qubits, the errors and the drift, including a tool
to visualise and analyse the results. A brief review of certification is also done by (Eisert, et al.,
2019), which also studies some benchmarks. They state that a measure of the quality of a processor
would be defined in terms of the difference (or measure) between the desired final state and the real
achieved result.
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5 Quantum Compilers Benchmarks

Other benchmarks focus on assessing the effects of quantum compilers. For instance, Arline (auto-
mated benchmarking platform for quantum compilers)! is a framework to evaluate the capabilities of
the compilers. Since compilers are a key module of the stack, indeed they should provide an efficient
circuit for the platform, they deserve a specific benchmark. This framework executes and reports a
set of cases, producing some metrics such as the compression factor (which measures the ratio of final
count of gates and the initial number), the final gate count, the circuit depth, the compiler runtime,
etc. The framework is automated and produces a report which currently permits to compare three
compilers: IBM Qiskit, pytket (from Cambridge Quantum Computing) and Google Circ. The code is
open-source and produces an automatic report with the plots to compare the results of the different
metrics.

6 Full-stack Benchmarks

There is a family of benchmarks that attempt to integrate the effects of the full software/hardware
stack of QC platforms in a benchmarking methodology.

In [18], the authors define what they call “holistic benchmarks” to stress quantum computing
systems as a whole, not each component individually. That is why this work can be classified in this
category of the state of the art. This paper is also inspired by the IBM volumetric benchmarks. The
proposed methodology is based on modifying the variable components of the stack one by one and
measure the effect of this variation in the overall performance of the platform.

For this, the authors propose three figures of merit that measures how close the solution is
to the correct one: heavy output generation probability, cross entropy difference and 11-norm dis-
tance. These three figures of merit compare distribution between the quantum platform output and
a classical simulation. This is possible as benchmarks restrict to use Clifford gates, where classical
simulation is feasible to up to 1000 qubits.

Other authors [19] perform a cross-technology hardware/software assessment of the design of a
Quantum platform. They assess the effect on performance and reliability of the design choices taken
at different levels of the stack, e.g. fundamental gates, their software visibility or communication
topologies.

As in the previous reviewed work, they focus on testing the influence on performance and success
rate of the optimization of one specific component of the stack. The intention of this analysis is to
probe that a tool where these characteristics are configurable can improve performance portability
in Quantum platforms.

In [2], the authors propose a benchmark framework that generalise the Quantum Volume,
moving from square circuits (depth and width are equal) to rectangular synthetic circuits, where
depth and width could be different. Also, they describe how these kind of circuits can be used to
replace other benchmarks (as the randomized benchmarks). And even they speculate that Grover or
Trotterized-based application benchmarks could be replaced by this rectangular circuits. Finally, the
authors also discuss briefly the different possibilities for defining the success criteria for a circuit, so
the test can be marked as “passed”, and propose a visualisation method to analyse the results.

The authors of [21] define a full methodology that permits the evaluation of the performance
of any computer for a specific application. They transform a general circuit in a set of mirror circuits

"https://www.airline.io
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(which add an approximate inverse of original circuits) that can be easily verified. That circuit
is finally equivalent to a circuit composed only of product of Paulis. This kind of circuit is easily
simulated for 1000’s of qubits. The methodology includes the possibility of restricting connectivity
and parallelism.

7 Application-level Benchmarks

Finally, there are benchmarks that focus on the application level. They evaluate the performance
measuring the capability of a platform to execute fast and accurately a given application.

While the previous set of benchmarks are important to evaluate the QPUs and the stacks, for
some areas, the execution of a specific type of applications is more informative. Following this path
[10] introduces an application-based benchmarking relying on the Ising model. It simulates the time
evolution of a Ising model with four sites and Open Boundary Conditions that can be expressed in
terms of sums of ¢, and of products of o,.

The authors define a specific metric (the gross averaged discrepancy) to compare results. Such
metric calculates the difference between the measured site occupations, and the exact value, for
all site occupations in the case where the measured value is above a certain threshold. They also
show that Quantum Volume is not a good metric to measure this kind of results, although further
research has to be pursued to understand this fact. [4] and [6] propose similar problems to evaluate
quantum computers, because the one-dimensional Ising or Fermionic Fermi-Hubbard models have an
exact analytic solution and, as a consequence, the produced result can be compared against them.
[27] defines a set of tests inspired by applications in chemistry, such as, packaging-related quantum
computing algorithms. These tests can measure the evolution of the computers and can compare it
with other classical methods.

QPack is another application-oriented benchmark[16] based on QAOA. They have included
three types of problems that can be solved by this optimisation algorithm (MaxCut, Traveling sales-
man problem and Dominating set problem), so the manufacturers or vendors cannot tune the system
for a single problem. The main metrics are the time of execution for a set of steps and the accuracy
of the solution. In the case of the time, because this is a hybrid algorithm, they propose several times
to measure:

o Overall run-time.

o Run-time classical hardware.

e Connection between classical and quantum hardware.
» Preprocessing/placing and routing.

o Run-time quantum hardware.

Quantum Machine Learning ([11],[28]) is another application where benchmarks have been
defined. One specific measure was presented earlier in this document (qBAS). It emulates the classical
Bars and Stripes problem. This set of proposals use classical metrics to compare the results, as the
Kullback-Leiber divergence (also known as relative entropy) between discrete probability distributions
P and Q defined upon the same space (X):

Dur(PIQ) = — 3 Pla) log (fig””i) @)

zeX
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or F1 score.

[7] propose a benchmark based on Random Circuit Block-Encoding (RACBEM), which is sim-
ilar to the dense matrix used on the LINPACK classical benchmarks. Block-Encoding is a technique
that allows to encode any n-qubit Hermitian matrix into a unitary (n-+m)-qubits operator. Reversing
the process, this means, firstly a random unitary operator is generated and later an encoded matrix
is found, it is possible to define a Quantum Linear System Problem to solve, which is used as bench-
marking. The advantage is that these circuits can be easily defined in a quantum computer and can
be used to test the full quantum stack.

[15] focus their proposal on chemistry calculations. The quantum results are compared against
classical accurate and but expensive models. The proposed benchmark is centred exclusively on
chemistry applications, so the utility out of this area could be minor.

QasmBench [13] is a low-level benchmark suite implemented with OpenQasm. In order to asses
if the suite covers the whole spectrum of QC application, they propose a set of metrics to classify
the candidate applications: circuit width and depth, gate density, retention lifespan, measurement
density, entanglement, susceptibility to NISQ error and potential gain from machine-specific opti-
mizations. The selected benchmarks are divided into: small (2-5 qubits), medium (6-15) and large
scale (> 15).

They measure the accuracy of the QC execution using Hellinger distance between the recon-
structed density matrix of the resultant mixed state in a real quantum device observed through
density matrix tomography, and the density matrix of the pure state by running the same circuit in
a noiseless classical simulator.

MQT Bench [22] is part of the Munich Quantum Toolkit (MQT). It is based on four design
principles: (1) cross-level support for different abstraction levels, (2) accesibility, as it provides an
easy web interface and a Python API, (3) generalizabilty as it provides a broad set of benchmarks,
and (4), exentedabilty to future algoritms, gate-sets and hardware architecture. The benchmarks
count is around 50.000 benchmarks ranging from 2 to 130 qubits. The selection criteria for the
benchmarks is to select those that they consider de-facto standards. They have a special section for
the variational quantum algorithms from IBM Qiskit application level.

Supermarq [25] is an application-based benchmark suite composed of 8 benchmarks that are
implemented in OpenQASM. A set of features vectors are used to take the decision of which bench-
marks are included in the suite. This is used to make sure that they cover all the spectrum of QC
applications. These metrics cover aspects that characterize a quantum workload such as: the amount
of measurement or entanglement, the shape of the circuit, and the percentage of 2-qubit gates, etc...

8 Discussion

At the end of this review, we can extract some conclusions about the state of QC benchmarking.
First, QC benchmarking methodologies follow two main trends: (1) Those that attempt to asses the
ability of the platform to deal with physical aspects of QC, like noise or different circuit configurations,
and (2) those that attempt to measure how fast a platform can execute typical quantum workloads.
Metrics of the first class of methodologies focus on measuring those physical aspects that are assessed
by the methodology or its impact on the accuracy of the quantum computation. Metrics of the
some class are divided among those targeting to measure the accuracy of the computation, and those
measuring the time to solution.

Second, in application level benchmarks there are also two additional aspects to consider, the
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scalability of the benchmarks and the criteria used to select them. The first aspect is solved
by some authors proposing different benchmarks for different circuits size, and by others proposing
parameterized benchmarks that can be instantiated for any circuit size.

The second aspect, the selection criteria, is solved by some authors with a short discussion
about the general criteria used for the selection, usually focusing on the coverage of aspects like
generality, complexity or circuit shape. Other authors use a systematic approach based on selection
metrics that guarantee that the full spectrum of applications is covered by the suite.

<
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