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1 Introduction
The Quantum Computing (QC) Benchmark Suite, defined within the framework of this contract,
comprises a set of benchmark cases defined in this document. These cases are extracted from several
domains where Quantum Computing (QC) has been probed to be useful.

The QC benchmark suite does not address the topic of “quantum supremacy”, i.e., finding an
algorithm that can be solved on a quantum computer but is difficult or almost impossible to solve in
a classical computer in a reasonable time.

Each case has four components: the selection criteria, the kernel definition, the test case, and
the benchmark execution procedure. We define now separately each of these parts.

• Selection Criteria: it is the justification of why the case is representative of a task that is
commonly performed in QC and suitable to be part of the suite. The cases that compose the
suite meet the following characteristics:

– They are based on a quantum algorithm or kernel that is common to several use cases and
representative of the needs of other algorithms of the same family.

– They scale with the number of qubits up to a reasonable number. Certainly, many of the
benchmarks are limited by the classical capacity for pre-processing and post-processing
information.

– They are defined at high level, i.e., they must be agnostic of the quantum computer
architecture, programming language, etc.

• Kernel: it is a core quantum subroutine or step which may be implemented using different
procedures or algorithmic approaches. Because of this, a Kernel is described using a high-level
mathematical or procedural definition. Examples are the Quantum Fourier Transformation,
the loading of an initial quantum state in a quantum circuit, etc.

• Benchmark: it is each one of the use cases in which the TNBS is divided. This document
contains a description of one of them. Each benchmark is composed of a description of the
Kernel and its corresponding Benchmark Test Case.

• Benchmark Test Case: it is a particular problem that involves the execution of the Kernel.
The output of this Test Case must be verifiable analytically or through a classical simulation.
The Test Case is used for evaluating the performance of a Quantum platform that executes the
Kernel. For example, the loading of a specific statistical distribution into a quantum circuit
(Benchmark Test Case) is used to evaluate the performance of a platform for loading an initial
quantum state in a quantum circuit (Kernel).

• Benchmark execution procedure: it is the detailed definition of the procedure to execute each
benchmark, collect the evaluation metrics and verified the accuracy of the output.

This document defines three benchmark cases: Probability Loading (Section 2), Quantum
Amplitude Estimation (Section 3), and Quantum Phase Estimation (Section 4).
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2 Benchmark for Probability Loading Algorithms
This section describes the T1: Probability Loading (PL) benchmark.

In Section 2.1, we justify its selection, and in Section 2.2, we describe its form as indicated by
the suite. Each kernel is associated with a Benchmark Test Case, which we detail in Section 2.3.

2.1 Kernel selection justification
The PL kernel is common to many different quantum algorithms like the HHL [8], quantum PCA
[12], quantum amplitude estimation algorithms [3] etc. This initialization step is, usually, a very
demanding part of any quantum algorithm because its number of operations typically scales as
∼ 2n, being n the number of qubits to be initialized. In addition, this kernel meets the three main
requirements from the QC benchmark methodology:

1. The kernel can be described mathematically or procedurally. Using this description, a stan-
dalone circuit can be generated (see section 2.2).

2. The kernel can be defined for different number of qubits.

3. The output can be verified with a classical computation (in the proposed Benchmark Test
Case, see section 2.3, the result is known a priori)

For all these reasons, the PL kernel is a good candidate for the TNBS.

2.2 Kernel Description
The PL kernel can be defined, mathematically as follows:

Let V be a normalised vector of complex values:

V = {v0, v1, ·, v2n−1}, vi ∈ C (1)

such that

2n∑
i=0

|vi|2 = 1 (2)

The main task of the PL kernel is the creation of an operator U, from the normalised vector
V, which satisfies equation (3):

U|0⟩n =
2n−1∑
i=0

vi|i⟩n (3)

This procedure can be used for the loading of a probability density function (PDF). In this
case, equation (1) can be reformulated as (4)

P = {p0, p1, ·, p2n−1}, pi ∈ [0, 1] (4)

Equation (2) must be transformed into equation (5)
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2.3 Description of the benchmark test case

2n∑
i=0

|pi|2 = 1 (5)

And (3) can be written as (6):

U|0⟩n =
2n−1∑
i=0

√
pi|i⟩n (6)

The Benchmark Test Case for the PL kernel developed in this document is based on this
particular case.

Note: The PL kernel definition is agnostic about the implementation of the loading operator U.
The kernel only provides conditions about the mandatory input vector P and about the behaviour of
the operator U. Different algorithms and procedure approaches can be used for constructing such an
operator. This operator implementation agnosticism will be kept in the design of the correspondent
Benchmark Test Case so it can be used as a methodology for evaluating different algorithms or
procedures for data loading into quantum circuits.

2.3 Description of the benchmark test case
This section presents the complete description of the Benchmark Test Case for the PL kernel. Section
2.3.1 describes the problem addressed by the test case. Section 2.3.2 provides a high-level description
of the case. Finally, Section 2.3.3 provides the execution workflow.

2.3.1 Description of the problem
The loading of a fixed normal probability distribution function, PDF, Nµ,σ(x), into a quantum circuit
is the Benchmark Test Case associated to the PL kernel. An operator U for loading this normal
PDF must be built using a probability loading algorithm, and the probabilities of the different possible
final states must be measured and compared with the original normal PDF.

Finally, the verification of the output can be done by comparing the obtained measurements
with the original PDF, using several metrics.

2.3.2 Benchmark test case description
This section introduces a detailed step-by-step workflow of the Benchmark Test Case. Given a
number of qubits, n, and using a specific input probability loading algorithm, the test case must
follow the following steps:

1. Take a random uniform distribution with a particular mean, µ̃ and standard deviation, σ̃,
selected within the following ranges:

• µ̃ ∈ [−2, 2]

• σ̃ ∈ [0.1, 2]

2. So the normal PDF is: Nµ̃,σ̃(x)

3. Create an array of 2n values: x = {x0, x1, x2, · · · , x2n−1} where:

[CTS-2022-0053 ] [Design of the Benchmark Cases of the Suite] 9



2.3 Description of the benchmark test case

• x0 such that ∫ x0

−∞
Nµ̃,σ̃(x)dx = 0.05

• x2n−1 such that ∫ x2n−1

−∞
Nµ̃,σ̃(x)dx = 0.95

• xi+1 = xi + ∆x

• ∆x = x2n−1−x0
2n

4. Create a 2n values array, P from x by:

P(x) = {P (x0), P (x1), · · · , P (x2n−1)} = {Nµ̃,σ̃(x0), Nµ̃,σ̃(x1), · · · , Nµ̃,σ̃(x2n−1)}

5. Normalize the P array:

Pnorm(x) = {Pnorm(x0), Pnorm(x1), · · · , Pnorm(x2n−1)}

where
Pnorm(xi) = P (xi)∑2n−1

j=0 P (xj)

6. Compute the number of shots nshots as:

nshots = min
(

106,
100

min (Pnorm(x))

)

7. Use the Pnorm(x) array as input of the particular probability loading algorithm for creating the
U operator such that :

U|0⟩n =
2n−1∑
i=0

√
Pnorm(xi)|i⟩n (7)

8. Execute the quantum program U|0⟩n and measure all the n qubits a number of times nshots.
Store the number of times each state |i⟩n is obtained, mi, and compute the probability of
obtaining it as

Qi = mi

nshots
∀i = {0, 1, · · · , 2n − 1}

9. With the measured array Q = {Qi}∀i = {0, 1, · · · , 2n − 1} and the initial normalised array
Pnorm compute following metrics:

• The Kolmogorov-Smirnov (KS) between Q and Pnorm. This is the maximum of the
absolute difference between the cumulative distribution functions of Pnorm and Q:

KS = max

∣∣∣∣∣∣
i∑

j=0
Pnorm(xj) −

i∑
j=0

Qj

∣∣∣∣∣∣ , ∀i = 0, 1, · · · , 2n − 1


• The Kullback-Leibler divergence is defined as:

KL(Q/Pnorm) =
2n−1∑
j=0

Pnorm(xj) ln Pnorm(xj)
max(ϵ,Qk)

where ϵ = min(Pnorm(xj)) ∗ 10−5 which guarantees the logarithm exists when Qk = 0
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2.3 Description of the benchmark test case

10. Execute a χ2 test using nshotsQ and nshotsPnorm and get its p-value (using as null hypothesis
that both sets are equal). If the p-value is lower than 0.05 then the obtained result should be
considered invalid. Este χ2 test no aparece antes, no?

Additionally, the time from steps 1 to 10 is measured as the elapsed time. If possible, the time
of the quantum part, step 8, should be measured separately as the quantum time.

2.3.3 Complete benchmark procedure
To execute a complete Benchmark Test Case of the PL kernel the next procedure must be followed:

• We must select in advance the set of the number of qubits to be tested (for example from n=4
to n=8).

• For each number of qubits the following steps must be performed:

1. Execute a warm-up step consisting in:

(a) Execute 10 iterations of the Benchmark Test Case, section 2.3.2, and the computation
of the mean and the standard deviation of the elapsed time, T̃ and σT metrics,
respectively.

(b) Compute the number of repetitions, M , using equation (8):

M =
(σTZ1− α

2

rT̃

)2 (8)

where r is the desired relative error for the elapsed time (fixed to r = 0.1) and Z1− α
2

is the percentile for α = 0.95

2. Execute the complete Benchmark Test Case, section 2.3.2, M times. M must be greater
than 5.

3. Compute the mean and the standard deviation for the elapsed time, quantum time, if
possible, and for the mentioned metrics in steps 9 and 10 of section 2.3.2: χ2, KS and KL.

• If the verification χ2 test fails (the p-value is lower than 0.05), the process must be stopped.

The method used to calculate the number of repetitions M in the previous procedure guarantees
that the elapsed time will have a relative error lower than 10% with a confidence level of 95%.
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3 Benchmark for Amplitude Estimation Algorithms
This section describes the T2:Amplitude Estimation benchmark.

Section 3.1 provides a justification for kernel selection according to the TNBS benchmarking
methodology meanwhile section 3.2 presents a complete description of this AE kernel. The kernel is
associated to a Benchmark Test Case which is described in Section 3.3.

3.1 Kernel selection justification
The AE kernel is a core step in quantum computation for various applications like finance [16, 25, 6],
chemistry [11, 1], machine learning [23, 24] and, even, can be used for generic tasks such as numeric
integration [15]. For executing AE kernel, different algorithm approaches, AE algorithms from now,
were proposed recently [3, 18, 5, 14, 26, 21, 13]. So the AE kernel can be considered as an interesting
candidate for TNBS kernel. Additionally, it satisfies the three main requirements from the QC
benchmark methodology:

1. A mathematical definition of the kernel can be given with enough accuracy to allow the con-
struction of a standalone circuit (see sections 3.2 and 3.3.2).

2. The kernel can be defined using a smaller or larger number of qubits.

3. The output can be verified with a classical computation (in the proposed Benchmark Test
Case, see section 3.3, the result is known a priori)

3.2 Kernel Description
The AE kernel, also know as the Amplitude Estimation problem, can be defined in the following
way:

Let an unitary operator A that acts upon an initial n-qubits state |0⟩n = |0⟩⊗n as shown in
equation (9):

|Ψ⟩ = A|0⟩n =
2n−1∑
i=0

ai|i⟩n (9)

Now we are interested in the sub-state composed by some basis states J = {j0, j1, · · · , jl}, so
we can write down (10):

|Ψ⟩ = A|0⟩n =
∑
j∈J

aj |j⟩n +
∑
i/∈J

ai|i⟩n (10)

If we define the sub-states |Ψ0⟩ and |Ψ1⟩ using (11):

|Ψ0⟩ = 1√
a

∑
j∈J

aj |j⟩n and |Ψ1⟩ = 1√
1 − a

2n−1∑
i=0,i/∈J

ai|i⟩n (11)

The final |Ψ⟩ can be expressed as (12):

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩ +

√
1 − a|Ψ1⟩ (12)
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3.2 Kernel Description

The AE kernel consists in getting an estimation of the amplitude of |Ψ0⟩: a.

Following subsections present different approaches for solving the AE kernel.

3.2.1 Monte Carlo Solution
One naive procedure for solving AE kernel, Monte Carlo solution from now, is measuring all the
qubits N times and getting the probability of obtaining the desired state |Ψ0⟩. In this case the
estimator of a, ã, will be given by equation (13):

ã = P|Ψ0⟩ = Number of times |Ψ0⟩ was measured
N

(13)

The error ϵa of this ã estimator can be obtained using the Chernoff-Hoeffding [9] bound (14):

P [ã ∈ |aj − ϵa, aj + ϵa|] ≥ 2e−2Nϵ2
a (14)

So if we want P [ã ∈ |aj − ϵa, aj + ϵa|] ≥ α (α ∈ [0, 1]) then the error is given by (15):

ϵ2a ≤ 1
2N

Ln[ 2
α

] (15)

So the error for the estimator ã has the following behaviour with the number of measurements
N :

ϵa ∼ 1√
N

(16)

Usually, for the AE kernel, instead of the number of measurements, the number of calls to
the oracle (this is the operator A), Noracle, is used. In the Monte Carlo solution: N = Noracle, so
equation (16) can be rewritten as equation (17)

ϵa ∼ 1√
Noracle

(17)

3.2.2 Canonical AE solution with Quantum Phase Estimation
In equation (12) the following substitution:

√
a = sin (θ) can be performed and equation (18) can be

obtained:

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩ +

√
1 − a|Ψ1⟩ = sin (θ) |Ψ0⟩ + cos (θ) |Ψ1⟩ (18)

Now a Grover-like operator [3] based on A, can be built following equation (19):

G(A) = A
(
Î − 2|0⟩⟨0|

)
A†
(
Î − 2|Ψ0⟩⟨Ψ0|

)
(19)

This Grover-like operator acts as shown in equation (20):

Gk(A)|Ψ⟩ = Gk(A)A|0⟩n = sin
(
(2k + 1)θ

)
|Ψ0⟩ + cos

(
(2k + 1)θ

)
|Ψ1⟩ (20)
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3.2 Kernel Description

. . .
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. . .

|0⟩⊗m

H

QFT † y
H

H

|0⟩⊗n A G2m−1
G2m−2

G20

Figure 1: Canonical Amplitude Estimation using Quantum Phase Estimation.

being k the number of times that operator G is applied.

The canonical Quantum Amplitude Estimation solution for AE kernel, uses the Quantum Phase
Estimation algorithm, QPE, [3] over the operator G(A) for computing ã. This algorithm allocates m
auxiliary qubits and applies, over |Ψ⟩, geometrically increasing controlled, by the different auxiliary
qubits, powers of G as shown in the Figure 1

Finally, the complex conjugate of the Quantum Fourier Transformation (QFT † in Figure 1)
is applied over the auxiliary qubits, that will be measured generating an integer y ∈ {0, 1, ...M − 1},
where M = 2m. This integer can be mapped to an angle using:

θ̃ = yπ

2m
(21)

In this case the estimation will be ã = sin2(θ̃). With a probability of at least 8
π2 ∼ 81% the

error of the estimator will be given by (22) [3]:

ϵ = |ã− a| ≤ 2π
√
a(1 − a)
M

+ π2

M2 (22)

So in this case the error for the estimator ã scales with:

ϵa ∼ 1
M

(23)

The number of auxiliary qbits, m, is related to the number of oracle calls by equation (24):

M = 2m = Noracle + 1
2

(24)

By plugging (24) into (23), the error for the canonical Quantum Amplitude Estimation algorithm
can be obtained as a function of the number of oracle calls (25):

ϵa ∼ 2
Noracle + 1

∼ 1
Noracle

(25)

This approach yields a quadratic speed up over the Monte Carlo method (17).
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3.3 Description of the benchmark test case

3.2.3 Amplitude Estimation without Phase Estimation
Canonical Quantum Amplitude Estimation is computationally expensive and presents some caveats
to be implemented in current quantum computers. However, there are several algorithms that can
solve the AE kernel, without the use of QPE, where the error of the ã estimation, ϵa, scales between
Monte Carlo and Canonical Quantum Amplitude Estimation one, this is:

1
Noracle

< ϵa <
1√

Noracle

(26)

The main idea of these algorithms is to take advantage of the fact:

Gk|Ψ⟩ = GkA|0⟩n = sin
(
(2k + 1)θ

)
|Ψ0⟩ + cos

(
(2k + 1)θ

)
|Ψ1⟩ (27)

And in the use of very smart strategies for selecting k in order to maximize the probability of
measuring the |Ψ0⟩:

P [|Ψ0⟩] = sin2 ((2k + 1)θ
)

(28)

3.3 Description of the benchmark test case
This section presents the complete description of the Benchmark Test Case for the AE kernel. The
main idea is the computation of the integral of a particular function, in a well-defined interval, using
some particular implementation, usually an AE algorithm, of the AE kernel.

Section 3.3.1 presents the base problem, integral computation, of the Benchmark Test Case
in a formal way. Section 3.3.2 describes, exhaustively, how the Benchmark Test Case should be
implemented from a formal perspective. Finally, Section 3.3.3 provides the workflow for complete
execution of Benchmark Test Case.

3.3.1 Description of the problem
The computation of the integral of a function, f(x), in a closed interval [a, b] ⊂ R, is the proposed
Benchmark Test Case for AE kernel.

An operator A must be constructed in such a way that the desired integral: F,

F =
∫ b

a
f(x)dx (29)

must be encoded into the amplitude of a very well final defined state. This is, the operator A
must act as showed in equation (30)

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩ +

√
1 − a|Ψ1⟩ (30)

where
√
a = F

This A operator must be given as input to an AE algorithm, that must return the estimation of
the F̃. To evaluate the performance of the operator the estimator should be compared to the actual
integral value F
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3.3 Description of the benchmark test case

The proposed function for the Benchmark Test Case is f(x) = sin x, whose integral can be
calculated easily as (31):

F =
∫ b

a
sin(x)dx = − cosx|ba = cos(a) − cos(b) (31)

and the two following integration intervals will be used:

• [0, 3π
8 ]: F0 =

∫ 3π
8

0 sin(x)dx = 0.6173165676349102. This computation will be mandatory.

• [π, 5π
4 ]: F1 =

∫ 5π
4

π sin(x)dx = −0.2928932188134523. This computation will be optional.

In summary, for the Benchmark Test Case, an operator A0 must be built and a particular AE
algorithm must compute and report the integral F0. Additionally, a second A1 operator can be built
and the corresponding integral F1 can be reported.

3.3.2 Benchmark test case description
This section presents a complete mathematical description of the Benchmark Test Case for the AE
kernel.

The Benchmark Test Case proposed requires a set of steps that are explained in detail in
Sections 3.3.2.1-3.3.2.4, namely: the discretization of the domain and the function, the normalization
of the array, and the encoding of the function as a quantum circuit. Section 3.3.2.7 describes the
metrics used to verify the output of the circuit, and Section 3.3.2.8 describes the general workflow of
the algorithm including the steps described before.

3.3.2.1 Domain Discretization The first step is the discretization of each domain in 2n intervals,
with n ∈ N as shown in (32):

{[x0, x1], [x1, x2], ..., [x2n−1, x2n ]} (32)

Where

• xi+1 > xi

• a = x0

• b = x2n

3.3.2.2 Function discretization For each domain following array with the discretization of the
desired function, f(x) = sin(x), must be computed:

fxi = f(xi+1) + f(xi)
2

The desired integral, for each interval, can be approximated as Riemann sum (33):

S[a,b] =
2n−1∑
i=0

fxi · (xi+1 − xi) (33)

Using xi+1 − xi = b−a
2n then we can write down (33) as:
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S[a,b] =
2n−1∑
i=0

fxi

b− a

2n
= b− a

2n

2n−1∑
i=0

fxi (34)

When (xi+1 − xi) → 0 (i.e., n → ∞), S[a,b] → F =
∫ b

a sin(x)dx

3.3.2.3 Array Normalisation A normalization step, over the fxi array, must be performed before
creating the operator A that will encode the function into a quantum circuit. This should be done
using (35):

f_normxi = fxi

max(|fxi |)
(35)

Now the computed integral will be

S[a,b] = b− a

2n

2n−1∑
i=0

fxi = b− a

2n

2n−1∑
i=0

max(|fxi |)f_normxi = max(|fxi |)(b− a)
2n

2n−1∑
i=0

f_normxi (36)

3.3.2.4 Encoding function into a quantum circuit The next step is to codify f_normxi array in
a quantum circuit. The following procedure must be used:

1. Initialize a quantum register with at least n+ 1 qubits1, where n must be equal to the n used
to define the 2n discretization intervals (see section 3.3.2.1):

|0⟩ ⊗ |0⟩n (37)

2. Apply the uniform distribution over the first n qubits as shown in (38):

(
I ⊗H⊗n)(|0⟩ ⊗ |0⟩n

)
= |0⟩ ⊗H⊗n|0⟩n = 1√

2n

2n−1∑
i=0

|0⟩ ⊗ |i⟩n (38)

3. Create an operator Uf for encoding the f_normxi . This operator must act as shown in (39):

Uf (|0⟩ ⊗ |i⟩n) =
(
f_normxi |0⟩ + βi|1⟩

)
⊗ |i⟩n (39)

4. Apply the Uf operator over the n+ 1 qubits:

Uf

(
I ⊗H⊗n) |0⟩ ⊗ |0⟩n (40)

5. Applying equation (38) and (39) into (40) equation (41) is obtained:

Uf

(
I ⊗H⊗n) |0⟩ ⊗ |0⟩n = Uf

(
1√
2n

2n−1∑
i=0

|0⟩ ⊗ |i⟩n

)
=

= 1√
2n

2n−1∑
i=0

Uf (|0⟩ ⊗ |i⟩n) = 1√
2n

2n−1∑
i=0

(f_normxi |0⟩ + βi|1⟩) ⊗ |i⟩n

(41)

1Additional auxiliary qubits may be used

[CTS-2022-0053 ] [Design of the Benchmark Cases of the Suite] 17



3.3 Description of the benchmark test case

6. In equation (41) the amplitude βi is not important.

7. Finally the uniform distribution is applied over the first n qubits again as shown in (42):

|Ψ⟩ =
(
I ⊗H⊗n)Uf

(
I ⊗H⊗n) |0⟩ ⊗ |0⟩n (42)

8. So applying (41) into (42) the equation (43) can be obtained:

|Ψ⟩ =
(
I ⊗H⊗n)Uf

(
I ⊗H⊗n) |0⟩ ⊗ |0⟩n = 1√

2n

2n−1∑
i=0

(
f_normxi |0⟩ + βi|1⟩

)
⊗H⊗n|i⟩n (43)

9. Taking into account only the |0⟩ ⊗ |i⟩n terms, equation (43) can be expressed as (44):

|Ψ⟩ =
(
I ⊗H⊗n)Uf

(
I ⊗H⊗n) |0⟩ ⊗ |0⟩n = 1√

2n

2n−1∑
i=0

f_normxi |0⟩ ⊗H⊗n|i⟩n + · · · (44)

10. It is know that:

H⊗n = 1√
2n

2n∑
j=0

2n∑
k=0

(−1)jk|j⟩nn⟨k| (45)

11. So H⊗n|i⟩n can be expressed using equation (46):

H⊗n|i⟩n = 1√
2n

2n∑
j=0

2n∑
k=0

(−1)jk|j⟩nn⟨k|i⟩n = 1√
2n

2n∑
j=0

(−1)ji|j⟩n = 1√
2n

|0⟩n + 1√
2n

2n∑
j=1

(−1)ji|j⟩n

(46)

12. Finally applying (46) into (44) and taking only into account the |0⟩ ⊗ |0⟩n term, equation (47)
can be obtained:

|Ψ⟩ =
(
I ⊗H⊗n)Uf

(
I ⊗H⊗n) |0⟩ ⊗ |0⟩n = 1

2n

2n−1∑
i=0

f_normxi |0⟩ ⊗ |0⟩n + · · · (47)

Using the previous steps, two different operators AI(fxi) must be created following equation
(48):

AI(fxi) =
(
I ⊗H⊗n)UI

f

(
I ⊗H⊗n) (48)

where the superscript I can take 0 or 1 depending on the domain integration interval

Using (47) the behaviour of such operators will be:

|Ψ⟩ = AI(fxi)|0⟩ ⊗ |0⟩n = 1
2n

2n−1∑
i=0

f_normxi |0⟩ ⊗ |0⟩n + · · · (49)
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Equation (49) can be compared with the equation (18):

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩ +

√
1 − a|Ψ1⟩

where

|Ψ0⟩ = |0⟩ ⊗ |0⟩n

and

√
a = 1

2n

2n−1∑
i=0

f_normxi

Now the Riemann sum approximation of the desired integral can be computed by measuring
the probability of obtaining the state |Ψ0⟩ = |0⟩ ⊗ |0⟩n as shown in (50)

P[|Ψ0⟩] = | ⟨Ψ0 |Ψ⟩ |2 =
∣∣∣∣∣ ⟨Ψ0 | 1

2n

2n−1∑
i=0

f_normxi |Ψ0⟩
∣∣∣∣∣
2

=
∣∣∣∣∣ 1
2n

2n−1∑
i=0

f_normxi

∣∣∣∣∣
2

= ã (50)

The ∼ in ã indicates that the amplitude was obtained using a quantum measurement.

Now, plugging (50) into the Riemann sum (36) the desired integral can be computed as (51)

S̃[a,b] = max(fxi) (b− a)
2n

(
2n
√

P[|Ψ0⟩]
)

(51)

In (51) the ∼ in S̃[a,b] indicates that the integral was obtained using a measurement meanwhile
the S[a,b] is for pure Riemann sum calculation as shown in (34).

The 2n terms can be removed from the equation but they will be kept for the moment.

3.3.2.5 Operator Uf This subsection describes the steps for building the Uf operator, equation
(39):

• The following array must be computed: ϕxi = arccos(f_normxi), using the values of array
f_normxi .

• For a given state |i⟩n ⊗ |0⟩, it must be implemented a rotation around the y-axis over the last
qubit, |0⟩, controlled by the state |i⟩n of 2 ∗ ϕxi . So the following operation must be built:

|0⟩ ⊗ |i⟩n → Ry(2 ∗ ϕxi)|0⟩ ⊗ |i⟩n = (cos(ϕxi)|0⟩ + sin(ϕxi)|1⟩) ⊗ |i⟩n (52)

• Now undoing the ϕxi and doing βi = sin(ϕxi) the desired operator Uf can be obtained by:

(f_normxi |0⟩ + βi|1⟩) ⊗ |i⟩n = Uf (|0⟩ ⊗ |i⟩n) (53)
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So the operator Uf can be constructed following equations (52) and (53) that can be summa-
rized into (54):

Uf (|0⟩ ⊗ |i⟩n) =
(
Ry(2 ∗ ϕxi)|0⟩

)
⊗ |i⟩n (54)

The Uf is a controlled rotation by state. The recommended way for implementing it, is using
quantum multiplexors [17]. A direct implementation of this operator can be used but, in general,
deeper circuits with redundant operations are obtained with respect to the quantum multiplexors
implementation.

3.3.2.6 Amplitude Estimation Algorithm As shown in section 3.3.2.4 the two AI operators allow
to encode each correspondent integral in the amplitude of the state |0⟩ ⊗ |0⟩n.

For a given AE algorithm:

• Operator A0 must be provided as input of the AE algorithm and the obtained S̃0
[a,b] integral

must be reported as output.

• Additionally, operator A1 can be provided as input of the AE algorithm and the obtained S̃1
[a,b]

integral can be reported as output.

Note: in general most AE algorithms use the Grover-like operator of A, equation (19), for
solving the AE kernel. The AE kernel and the correspondent Benchmark Test Case presented in
this document is agnostic to Grover operators. The only mandatory input is the operator A.

3.3.2.7 Getting the metrics The quality of the AE estimation of the integrals obtained in the
previous steps, S̃I

[a,b] (where I = {0, 1} stands for each of the intervals where the integral can be
computed) must be evaluated using the following metrics:

• Sum absolute error: between the AE estimator and the Riemann sum computed using (34):
ϵ = |S̃I

[a,b] − S[aI ,bI ]|

• Oracle calls: total number of calls of the operator AI

3.3.2.8 Summary AE benchmark kernel A step-by-step workflow of the Benchmark Test Case
for the AE kernel, with references to the before explained components, is presented here.

For a desired number of qubits and for one of the integration intervals, described in Section
3.3.1, following steps must be executed:

1. Create the domain discretization as explained in Section 3.3.2.1

2. Create the array with the correspondent sine function discretization as explained in Section
3.3.2.2

3. Compute normalization of the array as explained in Section 3.3.2.3

4. Create the AI oracle operator for encoding the array as explained in Section 3.3.2.4

5. Using the AI oracle operator as input of the AE algorithm for computing the estimation of ã,
see equation (50).

6. Post-process the result of the AE algorithm for getting the estimation of the integral as ex-
plained in Section 3.3.2.7 an in equation (51)
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7. Compute the desired metrics as explained in Section 3.3.2.7

Additionally, the following times should be computed:

• Complete benchmark step time: this is the time from step 1 to step 7. This will be the elapsed
time.

• The execution time of the Amplitude Estimation algorithm. This is the time of step 5. This
will be the run time

• If it is possible the time of the pure quantum part of the algorithm should be registered. This
will be the quantum time

3.3.3 Complete benchmark procedure
To execute the Benchmark Test Case for the AE kernel following steps should be done:

• A range of a number of qubits should be selected (for example from n=4 to n=8).

• For each selected number of qubits and each 2 described integral intervals following steps should
be executed:

1. Execute a pre-benchmark step consisting in:

(a) Executing 10 times the complete benchmark step (section 3.3.2.8) for a number of
qubits n, and the interval integration.

(b) For Sum absolute error, Oracle calls metrics and for the run time compute the mean,
µm, and the standard deviation, σm, where m is each of these quantities.

(c) For each of quantity m computes the number of repetitions Mm using (55):

Mm =
(σmZ1− α

2

rµm

)2 (55)

where r is the desired relative error for all the quantities m (it should be fixed to
r = 0.1) and Z1− α

2
is the percentile for a confidence level of α = 0.95

(d) Compute the maximum value of the different Mm obtained values: M = maxMm

2. Execute the complete benchmark test case (section 3.3.3) M times. M must be greater
than 5.

3. Compute the mean and the standard deviation for each of the metrics presented in section
3.3.2.7 (Sum absolute error, Oracle calls) and for all the measured times explained in
section 3.3.2.8 (elapsed time, run time and quantum time)

If the before workflow is followed it can be said that, for each qubit and interval executed, the
provided mean for the different obtained metrics (Sum absolute error, Oracle calls and elapsed time)
will have a relative error lower than 10% with a confidence level of 95%.
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4 Benchmark for Phase Estimation Algorithms
This section describes the T3: Phase Estimation benchmark.

Section 4.2 justifies why this is a good benchmark case and explains its suitability for the
suite. Section 4.2 provides a formal mathematical description of the kernels, while Section 4.3 offers
a detailed description of the test case, including a formal definition of the execution procedure.

4.1 Kernel selection justification
The Quantum Phase Estimation (QPE) kernel[10] is utilized to estimate the eigenvalues (or phases) of
a unitary operator. The QPE implements a measurement for any Hermitian operator and serves as a
key component in numerous quantum algorithms, such as Shor’s algorithm, the quantum algorithm for
solving linear systems of equations, or the measurement of the energy of a Hamiltonian in Variational
Quantum Eigensolver (VQE) algorithms[4].

Moreover, it fulfills the three main requirements of the QC benchmark methodology:

1. A mathematical definition of the kernel can be provided with sufficient accuracy to enable the
construction of a standalone circuit (refer to sections 4.2 and 4.3).

2. The kernel can be defined for a configurable number of qubits.

3. The output can be verified through a classical computation (see section 4.3.2).

4.2 Kernel Description
Let U be an m-qubit unitary operator. The eigenvalues of this operator are phases that can be
represented as e2iπλj for j = 0, 1, 2, · · · 2m − 1. For a particular eigenstate |ψj⟩, then:

U |ψj⟩ = e2iπλj |ψj⟩

where 0 ≤ λj < 1. The objective of the QPE kernel is to obtain an estimation, up to a finite level,
of the different eigenvalues λj . Consider a unitary operator U that operates on m qubits and has
an eigenvector |ψ⟩ with an associated eigenvalue e2πiθ, where 0 ≤ θ < 1. Our goal is to estimate
this eigenvalue to a finite level of precision by estimating the phase θ. The eigenvalue e2πiθ can be
expressed in this form because U is a unitary operator over a complex vector space, and therefore,
its eigenvalues must be complex numbers with an absolute value of 1.

The quantum phase estimation kernel operates on two registers, a m qubits for the input state
|ψ⟩ and a t qubits for the counting register used for the phase estimation. Thus, the total number
of qubits will be m + t. The initial state is set to |ψ⟩|0⟩, where |0⟩ is the t-qubit state |0⟩⊗t. The
quantum phase estimation kernel applies a sequence of controlled-U2j operations, where the j-th
control qubit is the t − j-th counting qubit and U is the unitary operator being estimated. This
operation maps the input state to

1√
2t

(|ψ⟩ + e2πi2t−1θU |ψ⟩ + e2πi2t−2θU2|ψ⟩ + · · · + e2πiθU2t−1 |ψ⟩)|0⟩

where θ is the unknown phase to be estimated.

The canonical QPE kernel approach, whose circuit implementation is shown in Figure 2, oper-
ates on two different registers: a n qubits one, initialized to the eigenstate |ψj⟩, and a m qubits one
to estimate the phase. Thus, the total number of qubits will be n+m.

The initial state is set to (dashed line 1 in Figure 2):
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. . .

. . .

. . .

. . .

|0⟩m

H

QFT †
∣∣2tλj

〉H

H

|ψj⟩n U2m−1 U2m−2 U20

1 2

Figure 2: Canonical QPE circuit.

|ψj⟩ ⊗ |0⟩

where |0⟩ = |0⟩⊗m.

As shown in Figure 2, a sequence of controlled-U2j operations, where the j-th control qubit is
the m− j-th counting qubit, is applied over the state |ψj⟩ (i.e. over the n qubits register)

This operation maps the initial state to the state (dashed line 2 in Figure 2):

1√
2m

(
|0⟩ + e2πi2m−1λj |1⟩

)
⊗ · · · ⊗

(
|0⟩ + e2πi2−1λj |1⟩

)
⊗
(
|0⟩ + e2πi20λj |1⟩

)
⊗ |ψj⟩

where λj is the unknown eigenvalue correspondent to the eigenstate |ψj⟩. After applying the
complex conjugate of the Quantum Fourier Transformation (operator QFT † in Figure 2) on the m
qubits register, they are measured and the resulting binary string is converted to a decimal fraction.
The output of the canonical QPE kernel is an estimator λ̃j of the eigenvalue λj to m bits of precision.

4.2.1 Methods to perform the QPE kernel
It is not in the spirit of this benchmark suite to link a kernel to a given method or implementation.
However, to gain perspective on the topic, we discuss some of the potential implementation variations
proposed for this algorithm[19, 10].

There are two main methodological approaches to the QPE: (1) invoking an inverse Quantum
Fourier Transform (QFT†) to extract the phase information or (2) performing a basic measurement
operation followed by classical post-processing instead.

The iterative quantum phase estimation algorithm (IQPE)[7] is a family of implementations
of the algorithm designed to address some of the limitations of NISQ-era quantum computers. For
this, the quantum platform interacts with a classical computer to iteratively estimate the phase.
The role of the classical computer is to provide feedback to the quantum computer based on the
intermediate measurements, which yields better accuracy. This approach implements the QPE with
a single counting bit.
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The Variational Eigensolver family of methods [20] uses a quantum variational approach to
compute the eigenvalues of the ground state of the energy of a Hamiltonian. This approach trades
complexity for time, as it reduces the complexity of the circuit with respect to traditional QPE
methods, but it requires several steps until the parameters (the rotation angle in this case) of the
variational circuit are properly adjusted.

This adjustment has been recently improved using Bayesian inference techniques[22]. These
techniques allow extracting the maximum amount of information from previous measurements, im-
proving the adjustment of the rotation angles for the next evaluation of the algorithm.

Other approaches do not require time evolution [2], like those based on the use of unitaries
that encode the spectrum of the Hamiltonian but are easier to implement than e−iHt.

In those algorithms that rely on the QFT† for transforming the result into the computational
base, the method to implement the QFT† is also an important source of variability, as many methods
have been proposed to implement this task [4].

4.3 Description of the benchmark test case
This section introduces the Benchmark Test Case for the QPE kernel. Subsection 4.3.1 describes
the base operator used. Subsection 4.3.2 provides the high-level description that any implementation
must follow. Subsection 4.3.3 provides the workflow that a complete Benchmark Test Case execution
must observe.

4.3.1 Description of the problem
The computation of the eigenvalues of a n qubits unitary operator Rz(θ)n = ⊗n

i=1Rz(θ), given a
fixed θ = π

2 , is the proposed Benchmark Test Case for the QPE kernel. Figure 3 shows the circuit
implementation of this operator. The Rz(θ) operator is a Z-axis rotation gate:

Rz(θ) =
(
e−i θ

2 |0⟩ ⟨0| + ei θ
2 |1⟩ ⟨1|

)
(56)

q0

q1

...

qn−1

Rz(θ)n
=

q0

q1

...
...

qn−1

Rz(θ)

Rz(θ)

Rz(θ)

Figure 3: Circuit implementation of the Rz(θ)n operator

A fixed QPE implementation must be used to compute the probabilities of the different eigenval-
ues of the Rz(θ)n operator, and these probabilities must be compared with the theoretical probability
distribution using various metrics.

[CTS-2022-0053 ] [Design of the Benchmark Cases of the Suite] 24



4.3 Description of the benchmark test case

4.3.2 Benchmark test case description
This section provides a step-by-step workflow of the Benchmark Test Case for the QPE kernel.
The benchmark requires fixing a discretization parameter m for each number of qubits n test. The
procedure follows 8 steps:

1. Generation of the reference probability distribution of the eigenvalues. This must be done
for each number of qubits (n) and using its associated discretization of 2m bins of the prob-
ability distribution. Thus, the following probabilities must be computed P th

λ,m( k
2m ) where

k = 1, 2, · · · 2m − 1 following the next steps:

(a) Compute each state of the 2n possible states as a binary string.

(b) For each of the computed states |i⟩ i = 0, 1, 2, · · · 2n − 1 perform the following computa-
tions:

• Count the number of zeros in the bit string representation of the state |i⟩: ni
0

• Count the number of ones in the bit string representation of the state |i⟩: ni
1

• Calculate the difference between the number of zeros and the number of ones: di =
ni

0 − ni
1

• Compute the associated angle, θi to the difference, di as: θi = −2di

θ where θ = π
2

• Compute the correspondent angle but only between [0, 2π): θi
[0,2π) = θi mod 2π

• Finally, compute the correspondent |i⟩ eigenvalue as: λi =
θi

[0,2π)
2π

(c) A eigenvalue λi was computed for each possible state |i⟩ i = 0, 1, 2, · · · 2n − 1. Some λi

eigenvalues will appear several times.

(d) Draw a histogram for the complete list of eigenvalues λi according to the following guide-
lines:

• The number of histogram bins will be 2m.

• The range of the histogram will be [0, 1]

• The frequency of eigenvalues in each bin k should be computed: fλk

• Each bin must be labelled as k
2m where k is the number of the bin (k = 0, 1, 2, · · · 2m−1)

(e) This histogram must be used to build a theoretical discrete probability distribution of the
eigenvalues: P th

λ,m( k
2m ) = fλk

. Figure 4 shows an example of the theoretical probability
distribution of the eigenvalues, for a n = 7 qubits Rz(θ)n operator.
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Figure 4: Example of histogram showing the theoretical probability distribution of the eigenvalues
for a n = 7 qubits operator Rz(θ)n with θ = π

2 . The histogram of the eigenvalues was discretized
in 2m bins with m = 7

2. Compute the number of eigenvalues that will be measured using the QPE routine neigenvalues

as:

neigenvalues = min

106,
100

min
(
P th

λ,m

)


3. Create the operator Rz(θ)n with θ = π
2 .

4. Create an initial state for the QPE routine that is an equiprobable combination of all the 2n

possible states:

|ψ0⟩ = 1√
2n

n−1∑
i=0

|i⟩

5. Provide the Rz(θ)n operator and the initial state |ψ0⟩ to the QPE routine, execute it and
measure the eigenvalue. This should be done neigenvalues times. So a complete list of neigenvalues

QPE eigenvalues is generated: λjQP E where j = 1, 2, · · ·neigenvalues

6. The list of eigenvalues generated by the QPE (λjQP E) must be used to draw a second histogram
using the same procedure as in step 1.d. This generates the measured probability distribution
of the values generated by the QPE: PQP E

λ,m ( k
2m ) with k = 0, 1, · · · 2m − 1.

7. The two discrete probability distributions, P th
λ,m and PQP E

λ,m , must be compared using the fol-
lowing metrics:

• The Kolmogorov-Smirnov (KS) between P th
λ,m and PQP E

λ,m . This is the maximum of the
absolute difference between the cumulative distribution functions of P th

λ,m and PQP E
λ,m :

KS = max
(∣∣∣∣∣

i∑
k=0

P th
λ,m( k

2m
) −

i∑
k=0

PQP E
λ,m ( k

2m
)
∣∣∣∣∣ , ∀k = 0, 1, · · · , 2m − 1

)
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• The Kullback-Leibler divergence, defined as:

KL(PQP E
λ,m /P th

λ,m) =
2m−1∑
k=0

P th
λ,m( k

2m
) ln

P th
λ,m( k

2m )
max(ϵ, PQP E

λ,m ( k
2m ))

where ϵ = 10−5 which guarantees the logarithm exists when PQP E
λ,m ( k

2m ) = 0

8. Execute a χ2 test using neigenvaluesP
th
λ,m and neigenvaluesP

QP E
λ,m and get its p-value (using as null

hypothesis that both sets are equal). If the p-value is lower than 0.05 then the obtained result
should be considered invalid.

Additionally, the time from steps 2 to 8 should be measured and labeled as the elapsed time. If
possible, the time of the pure quantum part, step 5, should be measured separately as the quantum
time.

4.3.3 Complete benchmark procedure
The procedure of execution of the Benchmark Test Case of the QPE kernel is as follows:

1. We must fix in advance the different numbers of qubits to be tested (for example from n=4 to
n=8).

2. For each number of qubits n, we have to fix the number of bins m of the discretization (in
general it is recommended that m ≥ n). Then, the following steps must be performed:

(a) Execute a warm-up step consisting in:

i. Execute 10 iterations of the Benchmark Test Case, subsection 4.3.2, and compute
the mean and the standard deviation of the elapsed time, T̃ and σT , respectively.

ii. Compute the number of repetitions, M , using equation (57):

M =
(σTZ1− α

2

rT̃

)2 (57)

where r is the desired relative error for the elapsed time (fixed to r = 0.1) and Z1− α
2

is the percentile for α = 0.95

(b) Execute the complete Benchmark Test Case M times for n qubits following section 4.3.2.
M being at least 5.

(c) Compute the mean and the standard deviation for the elapsed time, quantum time, if
possible, and for the mentioned metrics in step 6 and 7 of section 4.3.2: χ2, KS and KL.

3. If the verification χ2 test fails (the p-value is lower than 0.05), the process must be stopped.

The method used to calculate the number of repetitions M in the previous procedure guarantees
that the elapsed time will have a relative error lower than 10% with a confidence level of 95%.
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