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1. Introduction

Accurate and efficient simulation of nuclear magnetic resonance spectra from amolecule's spin
system requires constructing the Hamiltonian matrix of said spin system, whose dimensions in-
crease exponentially with respect to the number of corresponding atoms in the molecule (see,
for example, [?]). Subsequently, this Hamiltonian matrix is diagonalized to calculate its eigen-
values and eigenvectors, and the spectrum is simulated based on these values. It is precisely
the diagonalization of the Hamiltonian matrix that poses a bottleneck in the current algorithm,
as its performance scales exponentially with respect to the size of the molecule's spin system.

To mitigate the problems caused by this scaling, there are several existing techniques that
permit to calculate that spectrumwhen the dimensions are intractable (for example, fragment-
ing the spin system in several subsystems); however, the accuracy of the simulated spectrum
is reduced as these techniques are applied. Therefore, an accurate and efficient alternative
to this calculation would be of particular interest in the field of nuclear magnetic resonance
spectroscopy.

The proposed project aims to achieve accurate and efficient simulation of an NMR spectrum
using a quantum computer. Starting with known values for the chemical shifts and coupling
constants of the spin system, an algorithm has been developed to calculate the free induction
decay (FID) signal of the molecule in question, as well as its NMR spectrum (which is essentially
the Fourier transform of the FID signal). More details on this can be found in [?].

Twomain algorithms for tackling this task are proposed and analyzed, one based in quantum
phase estimation [?] and the other in the variational quantum eigensolver [?]. The last one is
specially relevant in the context of this project as, apart from laying the foundations of the
simulation of NMR spectra using quantum computers, it also allows the possibility to test it
with small molecules by means of the new quantum computer that will be available since the
final months of 2023 at the Galicia Supercomputing Center (CESGA) in Santiago de Compostela,
Spain.

2. Constructing the Hamiltonian Matrix of a Spin System

In this section, we introduce and explain the Hamiltonian matrix of a quantum spin system.
A spin system is a collection of quantum particles possessing spin, undergoing interaction.
Our proposed Hamiltonian is based in the quantum Heisenberg model for spin systems, with
the particularity of taking into account all possible interactions between nuclei, and also the
presence of individual terms due to the excitation of the spins in the presence of an external
magnetic field.

2.1. Brief Quantum Formalism

There are two key ideas that one must consider when dealing with the quantum realm. In
quantum mechanics, each possible state is represented by a state vector. Despite its abstract
nature, a state vector is simply a mathematical representation containing all the information
of the system. Consequently, each quantum system can be associated with a Hilbert space –-a
vector space over the complex field--– whose elements are these state vectors.
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On the other hand, physical properties are represented by Hermitian operators over the
Hilbert space of the system. For example, let us consider a system consisting of a single particle
with spin s= 1/2. The eigenvectors of its associated state space, i.e., its eigenstates, are |α⟩ and
|β ⟩, often named the spin-up and spin-down states. Any other possible state will be a linear
combination of these two states, obeying a normalization rule.

Now, this particle possesses a certain magnetic moment due to its spin. This quantity is
associated with the spin operators:

S⃗ = (Sx,Sy,Sz).

The spin operator Sz acts over the eigenvectors as:

Sz|α⟩=
1
2
|α⟩ Sz|β ⟩=−

1
2
|β ⟩

Remarkably, its eigenvalues are the two possible values of m for a spin-1/2 particle, i.e. m =
−1/2,1/2.

Let us suppose now that the system is composed of two spin-1/2 particles. Each individual
particle has an associated state space, namely H1 and H2. However, the total system also has
its own state space. This global state space is the tensor product of the individual spaces: H1⊗
H2. Thus, if both H1 and H2 were 2-dimensional, the global space would be 4-dimensional.

State vectors of this global space are simply pairs of state vectors ofH1 and state vectors of
H2 related via the Kronecker product. Thus, the eigenvectors will be: {|αα⟩, |αβ ⟩, |βα⟩, |ββ ⟩}.
In this notation, |αα⟩ means |α⟩⊗ |α⟩.

Returning to the spin operator Sz from the previous example, it is evident that an upgrade
is necessary. Given the presence of two particles, there are now two spin operators, S1z and
S2z, both acting on states within the global H1⊗H2 and each providing information about an
individual particle.

It is important to emphasize the following property of the Kronecker product: let A and B
be two operators, and let v and w be vectors, the subsequent relationship is observed:

(A⊗B)(v⊗w) = (Av)⊗ (Bw). (1)

where A⊗B is the Kronecker product between matrices A and B. This allows us to deduce the
construction of the new operators S1z and S2z in the global space:

S1z = Sz⊗ I

S2z = I⊗Sz

For a system of k particles, considering that the overall system is represented by the tensor
product of k individual Hilbert spaces, the spin operator for an individual particle, Siz, can be
expressed as a Kronecker product of k factors, where all factors are the identity matrix except
for the one at position i, which corresponds to the actual spin operator Sz. We introduce the
notation (C2)⊗k to signify a tensor product of k vector spaces. Thus, we can formulate

Siz = I⊗i−1⊗Sz⊗ I⊗k−i.

This generalizes to any other operator acting on a subset of the overall system.
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Note on spin operators

A closer examination of the various spin operators can be provided. Note how S⃗ is defined as a
vector operator. Naturally, even in quantum physics, magnetic moment remains a vector quan-
tity. The components of S⃗ encompass the three spin operators associated with each Cartesian
axis. Notably, Sz is conventionally chosen to align with the Z-axis, which corresponds to the
direction of applied magnetic fields. The remaining two spin operators are defined such that
the following commutation relationship (and cyclic permutations) holds:

[Sx,Sy] = iSz.

For a spin-1/2 particle, spin operators can be expressed by means of the Pauli matrices:

Sx =
ℏ
2

σx, Sy =
ℏ
2

σy, and Sz =
ℏ
2

σz.

where the Pauli matrices are defined as

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
.

Additionally, the set of these matrices along with the identity matrix, as well as any combina-
tion via Kronecker product of them, form a group of operators. They are referred as the Pauli
operators and are essential in quantum computing.

Hamiltonian operator

Once the concept of quantum operator has been shown, we shall now introduce the Hamil-
tonian operator. The Hamiltonian of a system contains the key information of the system's
energy and rules its evolution in time. Of course, in the quantum realm, this Hamiltonian is an
operator whose eigenvalues correspond to the possible energy values of the system. As any
other quantum operator, it may be associated with a matrix, which, in this case, is called the
Hamiltonian matrix.

2.2. Hamiltonian of a Spin System

Let us consider a system of a few spin-1/2 nuclei under a magnetic field oriented along the Z-
axis. As each particle possesses an intrinsic magnetic moment (referred to as its nuclear spin),
the applied magnetic field will excite each individual particle. Consequently, when constructing
the Hamiltonian matrix, this individual contribution must be carefully taken into consideration.
This term is referred to as the Zeeman interaction. For an individual particle, the contribution
will be −γ(1+ δ )Bm [?]. Breaking down this expression, we have γ as the gyromagnetic ratio
(which represents the relationship between its intrinsic angular momentum and its intrinsic
magnetic moment), δ as the chemical shift (a parameter related to the electronic structure of
a particle due to its chemical environment), B as the magnitude of the applied field, and finally,
the quantum number m. Overall, this can be viewed as simply as the product between the mag-
netic moment of the particle and the applied field. Keeping in mind that we are only interested
in the Z-axis, we can express the aforementioned expression as wSz, where w encompasses all
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the scalar components. Thus, summing up all the individual contributions from the k nuclei,
this addend of the Hamiltonian is expressed as follows:

HZ = ∑
k

wkSkz.

Another significant energetic contribution is present: nuclei can be coupled, implying that
the spin of each nucleus interacts with the spins of the surrounding nuclei. This interaction
becomes easier to understand if we envision each nucleus as a small magnet that interacts
with other magnets. Within this framework, we can easily calculate the energy of two spins, or
two dipoles. Similar to the contribution of the Zeeman effect, the energy will be a product of
the magnetic moment of particle 1 and the magnetic field of particle 2. Unlike the presented
Zeeman case, we cannot assume the magnetic field to be oriented along the Z-axis. In fact,
this magnetic field obeys a function dependent on the position of particle 2 and its intrinsic
magnetic moment. Also, it is important to note that now the term magnetic moment refers to
the complete vector magnitude. When we evaluate the product of both the magnetic moment
and the magnetic field of a spin particle, we arrive at the following expression:

E = Jm⃗1m⃗2.

In other words, the energy contribution is proportional to the product of both magnetic mo-
ments, being J the interaction amplitude.

It should already be clear that m⃗1 and m⃗2 correspond to S⃗1 and S⃗2, respectively. On the other
hand, these operators are connected through the tensor product. Remember that the energy
contribution is the product of the magnetic moment of particle 1 and the magnetic moment
of particle 2. The involvement of the tensor product in operators that describe properties of
individual particles within a global system has already been discussed. Thus, as stated in [?],
the Hamiltonian term of two coupled spins can be written as:

HJ = JS⃗1 · S⃗2.

If we take into account anisotropy, the magnitude J should become a tensor that provides
details about how the amplitude differs in each direction. However, under the assumption
of isotropy, J becomes a scalar. Additionally, we can clarify that the scalar product of the
vector operators refers to the Kronecker product of their components. Thus, we can rewrite
the expression as follows:

HJ = J(S1x⊗S2x +S1y⊗S2y +S1z⊗S2z)

This coupling interaction needs to be extended to the case of multiple nuclei. A question
that might arise is how many neighboring nuclei should be taken into consideration. However,
this matter will not be discussed here. In our case, all interactions will be computed.

Consider a system with three coupled spins. Unlike the scenario of a two-particle coupling,
there are now three distinct couplings: nucleus 1 interacts with nuclei 2 and 3, while nucleus
2 and nucleus 3 also interact between themselves. In this context, a single J-value no longer
applies. Instead, each coupling possesses its own unique J-value, denoted as Ji j when nuclei i
and j are involved. Observe that the product of operators becomes somewhat more intricate,
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yet it remains straightforward to articulate. With three different couplings, there arise three
distinct products. Let us explicitly express the contribution of each coupling to the Hamiltonian:

HJ12 = J12(S⃗1⊗ S⃗2⊗ I)

HJ13 = J13(S⃗1⊗ I⊗ S⃗3)

HJ23 = J23(I⊗ S⃗2⊗ S⃗3)

Once again, observe how these operators are constructed through tensor products of the
identity matrix I and the spin operators, positioned according to the nuclei indices. Thus, for a
spin system comprising k nuclei, the coupling term can be expressed as:

HJ = ∑
i, j

Ji jS⃗i · S⃗ j

It is important to note that the sum runs twice for each coupling pair. However, the definition
of the J-value holds some ambiguity and may incorporate a factor of 1/2.

Finally, we arrive at the expression for the Hamiltonian of a spin system, considering the
couplings among all spins:

H = ∑
k

wkSkz +
k

∑
i, j

Ji jS⃗i · S⃗ j

It is worth mentioning that the dimensions of the Hamiltonian matrix are 2k×2k, corresponding
to the 2k-dimensional Hilbert space of the entire system. For a possible implementation of the
process of calculating the Hamiltonian matrix of a spin system in Python we refer to the code
written by our colleague Gary Sharman, which can be found in [?].

3. Quantum Algorithm for Calculating the Eigenvalues of a
Hamiltonian Matrix

Now that we have a way to construct our Hamiltonian matrix directly from the chemical shifts
and the J-couplings of our quantum system for a certain magnetic field, it is time to analyze
the possibilities of diagonalizing such matrix, thus obtaining the eigenvalues and eigenvectors
of the system. We have analyzed two main alternatives from the current state of the art: the
quantum phase estimation algorithm, and the variational quantum eigensolver. In the present
chapter we will describe both approaches, while also enumerating all the advantages and set-
backs found for each of them.

3.1. Approach 1: Quantum Phase Estimation

Quantum phase Estimation (or QPE for short) was originally described in [?] and can be for-
mulated as follows. Given a unitary operator U acting on m qubits (i.e., a unitary matrix of
dimension 2m× 2m), then all its eigenvalues have unit modulus. Thus, if |φ⟩ is an eigenvector
of U , then U |φ⟩ = e2πiθ |φ⟩ for some θ ∈ R (we can assume that 0 ≤ θ < 1). The idea of the al-
gorithm is to obtain θ with high probability, thus obtaining the eigenvalue associated with the
eigenvector |φ⟩.

[Referencia Proxecto] [Title] 10/ 27



The number of quantum logic operations required to estimate the eigenvalue with precision
ε is O(1/ε), while the number of additional qubits (apart from the ones used to describe |φ⟩) is
O(log(1/ε)) [?]. Although as pointed out in [?] this approach requires fully coherent evolution,
which has not been reached yet in current quantum computers, we will nevertheless analyze
the possibilities of applying it to our problem.

SETUP

|ψ0⟩t,m← |0⟩t |φ⟩m

If |φ⟩ is an eigenvector of U and e2πiθ is its associated eigenvalue, the QPE algorithm is
capable of estimating the phase θ . In order to do that, the algorithm is implemented via two
different quantum registers. The first one contains t ancilla qubits which may be referred as
the estimation qubits, whereas the second register is commended to prepare the state |φ⟩ and
perform the controlled-U operation using m qubits. Alternatively, we may see both registers
as the control and target ones.

STEP 1

|ψ1⟩t,m← (H⊗t ⊗ I⊗m) |ψ0⟩t,m

Once the initial state has been prepared, the first step consists in applying Hadamard gates
to the control qubits, obtaining the following global state:

|ψ1⟩t,m =
1√
2t

2t−1

∑
k=0
|k⟩t |φ⟩m

We may clarify that 1/
√

2t arise as a normalization fraction and that |k⟩ corresponds to the
global state of the first register (as each ancilla qubit is either in state |0⟩ or |1⟩, we can under-
stand the target register as the integer k equivalent to the binary string formed by each qubit
value).

STEP 2

|ψ2⟩t,m←CU |ψ1⟩t,m

Now the system undergoes a process of controlled-U gates being applied to the second
register. Assigning to each control qubit an index j, the j qubit controls the application of the
U gate 2 j times. Since U2 j |φ⟩ = e2πi2 jθ |φ⟩, via the phase kick-back phenomenon the state of
both registers after this process is:

|ψ2⟩t,m =
1√
2t

2t−1

∑
k=0

e2πikθ |k⟩t |φ⟩m
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From now on, we can forget about the second register and just take into account the t qubits
of the first register.

|ψ2⟩t =
1√
2t

2t−1

∑
k=0

e2πikθ |k⟩t

STEP 3

|ψ3⟩t ← QFT−1
t |ψ2⟩t

Performing the inverse quantum Fourier transformation to the first register of qubits, the
state transforms to:

|ψ3⟩t =
1√
2t

2t−1

∑
k=0

e2πikθ

(
1√
2t

2t−1

∑
x=0

e
−2πikx

2t |x⟩t

)

=
1
2t

2t−1

∑
x=0

2t−1

∑
k=0

e−
2πik
2t (x−2t θ) |x⟩t

For the sake of simplicity, we can rewrite that as

|ψ3⟩t =
2t−1

∑
x=0

αx |x⟩t

where

αx =
1
2t

2t−1

∑
k=0

e−
2πik
2t (x−2t θ).

If we round 2tθ to its nearest integer (namely a ∈ Z), then 2tθ = a+ 2tδ where 0 ≤ |2tδ | ≤ 1/2.
Thus:

αx =
1
2t

2t−1

∑
k=0

e−
2πik
2t (x−a)e2πiδk.

STEP 4

x̃←measure the first register

We are finally in position to measure the t qubits of the first register, obtaining an integer x̃
between 0 and 2t −1. If we analyze the probability of retrieving a certain x̃, we obtain:

P(x̃) = |αx|2 =

∣∣∣∣∣ 1
2t

2t−1

∑
k=0

e
−2πik

2t (x−a)e2πiδk

∣∣∣∣∣
2

.

Notably, if 2tθ is already an integer, then δ = 0 and P(a) = 1, so we get directly the exact
value of θ we are looking for on the first try. However, the general case, in which 2tθ is not an
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integer, needs additional insight. Let us write the probability of obtaining the desired number
in that case:

P(a) =
1

22t

∣∣∣∣∣2
t−1

∑
k=0

e2πiδk

∣∣∣∣∣
2

≥ 4
π2 ≈ 0.4052847...

The proof of the last inequality can be found in [?], which gives an acceptable probability of
success. Moreover, as stated in [?], it is possible to obtain θ with and accuracy of 2−n and with
a probability of success of at least 1−ε just by forcing the number of estimation qubits t to be

t = n+
⌈

log(2+
1

2ε
)

⌉
.

Now, it is obvious that the condition of preparing the second register with the state |φ⟩
requires to already know said eigenvector. A state |V ⟩ may be prepared such that | ⟨V |φ⟩ |2
relates to the probability of the QPE still having success. More precisely, |V ⟩may be expressed
as a linear combination of the actual eigenvectors of the operatorU ., i.e., |V ⟩=∑m cm |φm⟩. In that
case, the output of the algorithm will be one of the m possible eigenvalues, and the probability
of extracting each one is |cm|2.

Thus, by preparing initial |V ⟩ states which satisfy | ⟨V |φ⟩ |2≈ 1, and performingmultiplemea-
surements, QPE is able to obtain all eigenvalues φm, each one with a probability of success of
|cm|2(1− ε).

Focusing now on our problem, given the Hamiltonian matrix H, we may build the unitary op-
eratorU = ei2πH . It is well known that H andU share eigenvectors. Moreover, their eigenvalues
are related via complex exponentiation. If λ is an eigenvalue of H, then ei2πλ is an eigenvalue of
U . Thus, by retrieving the phases of the eigenvalues of U , we obtain the eigenvalues of H.

In order to build the QPE circuit, a quantum gate for U must be provided. Thanks to the
Hamiltonian being naturally encoded as Pauli operators, this task is fairly achievable.

First, wemay decompose our global Hamiltonian as a sumof terms acting on a reduced num-
ber of qubits. Although, on a strictly mathematical sense, addends and sum all have identical
dimension, we may take advantage of how each addend only refers to a two body interaction
at most. Furthermore, since all terms are Hermitian we may write:

eit ∑H = lim
r→∞

(eitH1eitH2 ...eitHn−1eitHn)r.

This expression is known as the Lie-Trotter product formula [?]. Unless the matrices com-
mute, the exponential of the sum of two matrices is not equal to the product of the individual
exponentials. Thus, we must establish a limit, and the equality holds when r tends to infinity
(r is known as the Trotter number, indicating the number of Trotter steps). Intuitively, Trot-
terization may be seen as slicing a big temporal process into many smaller processes, which by
iteration lead to the same final result.

Since the product formula must be truncated by the choice of a finite r value, we may in-
vestigate the error associated to the approximation. Given an approximation U1 of eit ∑i Hi with
r Trotter steps, the error is upper bounded by the following equation, where || • || denotes the
Frobenius norm [?]:

||eit ∑i Hi −U1|| ≤
t2

2r

L

∑
j=1
||

L

∑
k= j+1

[Hk,H j]||.

[Referencia Proxecto] [Title] 13/ 27



Now it is time to begin the translation of exponential operators into quantum gates. Firstly,
we recall exponentiation of Pauli matrices are rotations on the Bloch sphere about x⃗, y⃗, z⃗. There-
fore, the rotation quantum gates Rx, Ry, Rz are defined as follows:

Rx(θ)≡ e−iθσx/2 = cos
θ
2

I− sin
θ
2

σx =

[
cos θ

2 −isin θ
2

−isin θ
2 cos θ

2

]
Ry(θ)≡ e−iθσy/2 = cos

θ
2

I− sin
θ
2

σy =

[
cos θ

2 −sin θ
2

sin θ
2 cos θ

2

]
Rz(θ)≡ e−iθσz/2 = cos

θ
2

I− sin
θ
2

σz =

[
e−iθ/2 0

0 e−iθ/2

]
In our case, we deal with the exponentiation of Kronecker products of Pauli matrices. We

will make use of the following relationship for any real number t and any matrix A such that
A2 = I.

eiAt = cos(t)I + isin(t)A

We note that for any tensor product of Pauli operators, namely P = (σi ⊗ ...⊗ σ j), it holds
that P2 = I. The total tensor product can be squared making use of the property portrayed
in Equation 1. Thus, P2 = (σi⊗ ...⊗σ j) · (σi⊗ ...⊗σ j) = (σiσi⊗ ...⊗σ jσ j). Now σ2 = I for any
σ ∈ {I,σx,σy,σz}, and trivially the Kronecker product of identity matrices is equal to the iden-
tity matrix of the product space.

Now we are able to write ei(I⊗Z)t = I⊗Rz(−2t) and, analogously, ei(Z⊗I)t = Rz(−2t)⊗ I. Thus,
a quantum circuit implementing the exponential of the individual terms of the Hamiltonian is
achieved by simply applying a Rz gate to the corresponding qubit.

In the case of having ei(Z⊗Z)t , the quantum circuit needs to be complemented with CNOT
gates both before and after the Rz gate. In other words, ei(Z⊗Z)t =CNOT (I⊗Rz(−2t))CNOT , and
the quantum circuit is portrayed as:

• •
Rz

The first CNOT entangles the two qubits. With this mental framework it is easy to gener-
alize the former quantum circuit implementation for any ei(...Z⊗...⊗Z⊗...) by modifying the indices
of the qubits on which the gates act. Examples for ei(Z⊗I⊗Z) and ei(I⊗Z⊗Z) are given.

• •

Rz

• •
Rz

Lastly, coupling terms involving operators X and Y may be implemented with the same
model but performing a change of basis. This is achieved by means of the Hadamard gate
to alternate between X basis and Z basis, and Y ≡ Rx(−π/2) to alternate between Y basis and
Z basis [?].

Thus, we present the quantum circuit for ei(X⊗X)t

H • • H

H Rz H
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and for ei(Y⊗Y )t

Y • • Y

Y Rz Y

With this procedure we can map the operator e(i2πH) into a set of quantum gates that shall
be bundled into the unitary gate U composing the quantum phase estimation circuit. We may
finally clarify the angle of rotation of the Rz gates would be −4πθ , with θ being the chemical
shift or the J-value that accompanies the exponentiated operator.

Another aspect to take into account is that, since a value is indistinguishable from itself plus
any number of 2π radians rotations, QPE can only estimate phases within the interval [0,1). This
means large eigenvalues are not tractable. As proposed in [?], we can adjust the range of the
eigenvalues of matrix H by dividing said matrix by a constantC dependent on the bounds of the
maximum and minimum eigenvalues. The estimation of these bounds requires the trace of H
and the trace of H2. However it can be shown that there is no need to build the whole matrices
to compute these parameters, and instead both traces can be calculatedmaking use of the Pauli
operators and themathematical relationships tr(A⊗B) = tr(A)tr(B) and tr(A+B) = tr(A)+tr(B).

In our case, we chose C to be four times the bound of the greater eigenvalue. This way,
the eigenvalues will be within the range [-0.25, 0.25]. However, negative eigenvalues still pose
a problem for the QPE algorithm. It is then desirable to shift the range bounds towards [0,
0.5], which can be achieved by adding an extra phase contribution to each ancilla register equal
to 0.25 times the number of U gates the corresponding ancilla qubit controls. We may note
that this scaling is translated into the argument of the rotation gates undergoing the same
scale transformation. Once the algorithm estimates a phase, it is corrected by subtracting the
additional 0.25 and later multiplying by C to obtain the desired eigenvalue.

With the QPE algorithm explained we may propose the following workflow. We run the QPE
algorithm a certain number of trials for a random initial state until all eigenvalues have been
obtained (it must be noted that QPE does not necessarily return an actual eigenvalue as, even
if the algorithm is built to maximize the odds of returning an eigenvalue, other outcomes are
still possible). Thus one should have a efficient method to perform this verification after each
step.

3.2. Approach 2: Variational Quantum Eigensolver

The variational quantum eigensolver ---from now on, VQE--- was first introduced in [?] as an
alternative to quantum phase estimation, and requires combining a quantum processor with
a classical computer. Its main advantage is that the requirements of such quantum processor
can already be found in the current state of quantum computing, usually referred to as the
noisy intermediate-scale quantum ---NISQ--- era (for example, the depth of the circuit does
not increase as in with quantum phase estimation, and consequently the noise does not affect
the algorithm in the same way). The VQE belongs to a family of algorithms called VQAs (short
for variational quantum algorithms), which make use of classical optimization to optimize the
parameters of the quantum circuit involved in the process.

As explained in [?], the first step of any variational quantum algorithm consists in defining a
cost function that encodes the solution of the problem. In the case of VQE, it has the following
shape:

C(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ .
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This cost function fulfills the inequation EG ≤C(θ), where EG is the energy of the ground state
of the system (i.e., the lowest eigenvalue of the Hamiltonian matrix). Thus, whenever |ψ(θ i)⟩
equals the ground state of H, namely |ψG⟩, for a certain θ i, it holds that C(θ i) = EG.

The idea now is to write the Hamiltonian as a linear combination of products of Pauli op-
erators ---which we already did in Section --- so that it becomes measurable by a quantum
computer. Let us suppose that such representation of our Hamiltonian matrix is

H = ∑
k

ckPk,

where Pk ∈ {I,σx,σy,σz}⊗n are the aforementioned products of Pauli operators (for n being the
number of qubits of our quantum system) and ck ∈ R are a set of linear coefficients. Then, the
minimization problem to be resolved can be stated as:

min
θ ∑

k
ck ⟨0|n U†(θ)Pk U(θ) |0⟩n

Finally, if we define EPk(θ) = ⟨0|n U†(θ)Pk U(θ) |0⟩n, we can see that EPk is the expected value
of the term Pk, which can be computed by a quantum processor. If the calculation of EPk(θ) is
seen as a black box, then we obtain a classical minimization problem whose objective function
is

min
θ ∑

k
ckEPk(θ).

Then, we need to propose an ansatz U(θ) ---i.e., the structure for the parameterized quan-
tum circuit---, an initial state |ψ0⟩ and a trial state |ψ(θ)⟩=U(θ) |ψ0⟩. Given those, the expected
value of the Hamiltonian can be calculated as:

E(θ) = ⟨ψ(θ)| H |ψ(θ)⟩
= ⟨ψ0|U†(θ)H U(θ) |ψ0⟩
= ∑

k
ck ⟨ψ0|U†(θ)Pk U(θ) |ψ0⟩

Although the most common ansatz in the literature is the Unitary Coupled Cluster (UCC)
ansatz (see, for example: [?]) it is not directly applicable to our case because of the nature of
the Hamiltonian, as it requires to have said Hamiltonian expressed in terms of creation and
annihilation operators, while ours is expressed in terms of Pauli operators. There may exist
the possibility of applying a Jordan-Wigner transformation to our Hamiltonian to overcome
this hurdle [?], but we have not explored that path. Instead, we have followed [?] and [?] for
constructing a different ansatz.

For a system of N spins our proposed ansatz, the XY-ansatz, is:

U(θ) = [
1

∏
l=N−1

l+1

∏
k=N

Ulk(θlk)][
1

∏
l=N−1

l+1

∏
k=N

Ukl(θkl)]

where:

Upq(θpq) =

{
e−iθpqσy

pσ x
q if p = N or q = N

e−iθpqσy
pσ x

q σ z
N otherwise
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We clarify σ i
p refers to the i Pauli operator acting on the p qubit. For the said system of N spins,

the ansatz will consist of N(N−1) parameters to be optimized.
Now in order to compute the expected value of a certain Pauli operator, a customized quan-

tum circuit must be constructed consisting of the ansatz part and a measurement part. Notice
that all measurements are done in the computational basis, and consequently some changes of
basis may be required. For the X operator a Hadamard gate must be applied whereas for a the
Y operator the S† is needed. Computation of expected values requires the quantum circuit to be
run several times. In order to achieve a result with precision ε , O(1/ε2) shots are needed. The
total number of quantum circuit executions may be reduced by measuring more than one oper-
ator's expected value at once. This can be performed as long as some commuting relationship
is held [?].

Qubit-wise commuting refers to the commutation relationship held by Pauli operators of
two different Hamiltonian terms acting on the same qubit space. For example, taking the terms
ZI and ZZ, both consist on the same Pauli operator acting on the firs qubit. As for the second
qubit, I and Z commute, therefore only a quantum circuit is needed to measure both expected
values. Another example would be terms such as XIXI and IXIX (or any other permutation)
when we may compute several expected values with just one quantum circuit by simply se-
lecting which qubits are measured. Of course, global commuting is still a valid criterion for
grouping terms. This procedure is known as Pauli grouping; however, it should be noted that
finding the optimal Pauli grouping is far from trivial.

Since in order to diagonalize the Hamiltonian matrix all eigenvalues and eigenvectors must
be known, the VQE algorithm must be improved somehow. The folded spectrum method pro-
posed in [?] is capable of finding all eigenvalues by means of computing the expected value of
(H−wI)2. The key idea is that H and (H−wI)2 share eigenvectors but have their eigenvalues
in different order. The ground state of (H−wI)2 coincides with one of the excited states of H,
specifically with the one with eigenvalue closest to w.

That being said, the cost function shall be:

E(θ) = ⟨ψ(θ)| (H−wI)2 |ψ(θ)⟩ .

And the VQE must be performed for a range of w values. However, this method presents the
drawback of increased number of operators to be measured, and thus Pauli grouping is desired
in order to manage this issue.

Another approach consists on modifying the cost function by adding a new term related to
the condition that each new eigenstate must be orthogonal to the previous ones [?]. For the
k-th state, the cost function would be:

E(θ k) = ⟨ψ(θ k)| H |ψ(θ k)⟩+
k−1

∑
i=0

βi |⟨ψ(θ k)|ψ(θ i)⟩|2

This new term is zero if the states are orthogonal. The coefficient βi needs to be large enough,
fulfilling the condition βi > λk−λi. This condition arises from the following reasoning: suppose
we want to find the k-th eigenvalue of the Hamiltonian H. This problem is equivalent to finding
the ground state of

Hk = H +
k−1

∑
i=0

βi |i⟩⟨i| ,
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Figure 1: Sulfanol molecule

with |i⟩ being the previous eigenstates. Then, for an arbitrary |ψ⟩= ∑ai |i⟩, we have

⟨ψ|Hk |ψ⟩=
k−1

∑
i=0
|ai|2(λi +βi)+

d−1

∑
i=k
|ai|2λi,

where d is the total number of eigenvectors of H. Taking wrongly βi = γ − λi ≤ λk − λi , the
minimization of the cost function will return γ instead of the actual eigenvalue.

A quantum circuit to compute the value |⟨ψ(θ k)|ψ(θ i)⟩|2 is proposed in [?]. Provided the gate
composition of the ansatz, A, and its inverse, A†, we may build a circuit applying A(θ k)

†A(θ i) to
the state |0⟩. The overlap is then estimated by counting the relative frequency of measuring
again the state |0⟩.

Within this method the workflow consists in computing the lowest eigenvalue and its eigen-
vector in the firs step as in a classic VQE, and then computing the next ones. For βi we may
propose to choose the difference between the lower and upper bound of the eigenvalues. In
every computation not only the inherent errors of the VQE apply but also a phenomenon of
error accumulation arises.

All these possible VQE implementations and variations share the classical process of com-
mitting an optimization, a step that presents its own issues. Remarkably, the cost function
often presents local minima [?] which may lead to an outcome which is not a real eigenvalue.
On the other hand, while minimizing the function, the gradients of the cost function may van-
ish exponentially with respect to the system size due to, for example, a random initialization of
the circuit parameters, a phenomenon known as the barren plateau problem [?]. These issues
must be taken in mind when selecting the optimization method: for example, gradient-free
methods such as Simultaneous Perturbation Stochastic Approximation (SPSA) or COBYLA may
be preferred [?]. However, even gradient-free optimizers may be affected by the barren plateau
problem [?].

4. Example: Sulfanol

We proceed to illustrate the construction of a Hamiltonian matrix using the example of hy-
drogen thioperoxide ---also called sulfanol---, whose molecule, as rendered in MestReNova, is
shown in Figure 1. As can be seen, this molecule has the structure H–S–O–H, with two hydrogen
atoms, one sulphur atom, and one oxygen atom. If we want to calculate the 1H-NMR spectrum
of said molecule, we must take into account only the hydrogen atoms, thus obtaining a spin
system of two particles.

After predicting the spin system --assuming a spectrometer frequency of 400 MHz-- and
labeling the atoms as in Figure 1, we obtain the following values for the chemical shifts and
J-couplings:
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δ1 = 3.44 ppm

δ2 = 7.40 ppm

J1,2 = 2.32 Hz

As explained in Section , and after the agreement that ℏ≈ 1, the contributions of the differ-
ent chemical shifts to the Hamiltonian matrix can be calculated as follows:

Hδ1 = wδ1 (Sz⊗ I2) = wδ1

(
1/2 0

0 −1/2

)
⊗
(

1 0
0 1

)
and

Hδ2 = wδ2 (I2⊗Sz) = wδ2

(
1 0
0 1

)
⊗
(

1/2 0
0 −1/2

)
.

Where wδi = 2πB(δi−offset), and we have used a field of 400 MHz and an offset of 5 ppm.
Next, we need to calculate the contribution of the J-couplings to the Hamiltonian matrix.

In this case, there is just one J-coupling:

HJ1,2 = 2πJ1,2(Sx⊗Sx +Sy⊗Sy +Sz⊗Sz).

Conversely:

HJ1,2 = 2πJ1,2

[(
0 1

2
1
2 0

)
⊗
(

0 1
2

1
2 0

)
+

(
0 − i

2
i
2 0

)
⊗
(

0 − i
2

i
2 0

)
+

( 1
2 0
0 − 1

2

)
⊗
( 1

2 0
0 − 1

2

)]
.

Summing up all the contributions to the Hamiltonian matrix, i.e.

H = Hδ1 +Hδ2 +HJ1,2 = wδ1(Sz⊗ I2)+wδ2(I2⊗Sz)+2πJ1,2(Sx⊗Sx +Sy⊗Sy +Sz⊗Sz),

we arrive at its final form:

H =


1062.215 0 0 0

0 −4970.921 7.288 0
0 7.288 4963.633 0
0 0 0 −1054.927


Now it is time to compute the eigenvalues and eigenvectors of that Hamiltonian matrix. We

obtain them with quantum algorithms explained in the following sections without the need
to construct the matrix. For now, just suppose that we have calculated them somehow. The
eigenvalues are

λ0 =−4970.9263
λ1 =−1054.927
λ2 = 1062.215
λ3 = 4963.6383

with the corresponding eigenvectors being
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ν0 =


0

0.99999
−0.00073

0

 ,ν1 =


0
0
0
1

 ,ν2 =


1
0
0
0

 and ν3 =


0

−0.00073
0.99999

0

 .

The final part involves calculating the FID from the Hamiltonianmatrix diagonalization (see,
for example, [?]). First, we need to construct the diagonal form of the Hamiltonian matrix:

DH =


−4970.9263 0 0 0

0 −1054.927 0 0
0 0 1062.215 0
0 0 0 4963.6383

,

and a matrix with the eigenvectors:

VH =


0 0 1 0

0.99999 0 0 −0.00073
−0.00073 0 0 0.99999

0 1 0 0

.

Then, if we want an FID with d points of resolution, each point FID( j) with j ∈ {0, . . . ,d−1}
can be calculated as:

FID( j) = Tr(T ( j) ∑
k

Skx)+ iTr(T ( j) ∑
k

Sky),

where

T ( j) =VHe−ip0
j DV †

H

(
∑
k

Skx

)
VHeip0

j DV †
H ,

p0
j = j ·SW, and SW is the spectral width desired for the resulting spectrum. After calculating

the points of our FID and removing the unnecessary regions, we arrive at the result shown in
Figure 2.

Now that we have shown how to simulate the 1H-NMR spectrum of the sulfanol molecule,
it is time to explain the process of obtaining the eigenvalues of its Hamiltonian matrix using a
quantum computer with both the QPE and VQE algorithms.

The code for carrying simulations of the quantum algorithmswas developed using the open-
source toolkit Qiskit [?].

4.1. Calculation of the Eigenvalues Using the QPE Algorithm

In order to find the eigenvalues of the Hamiltonian of the sulfanol molecule, we have run a
classical simulation of the QPE algorithm, using the Finis Terrae III, the computer at CESGA in
Santiago de Compostela, Spain. In this section, we proceed to enumerate our findings. The
code used in the simulation can be found in [?].

The workflow may be described as follows: we prepare the second register on a random
initial state and we run the QPE circuit at most ten times. The first register contains 12 ancilla
qubits, while in order to implement the U gate we have used a Trotter number of 10 steps.
For every outcome, we verify whether or not it is an eigenvalue by classically computing the
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Figure 2: Classically calculated 1H-NMR spectrum of the sulfanol molecule

determinant of H − λiI. This step actually requires the construction of the matrix H, loosing
the advantage of quantum computational approach of not needing to build the matrix. Addi-
tionally, a tolerance for the equality to zero must be selected. Every time an actual eigenvalue
is successfully obtained, the second register collapse to its corresponding eigenstate. How-
ever, as noted in [?], this information is trapped and it is not an easy task to access the full
characterization of said state.

We first compute the scaled Hamiltonian choosing as our scale constant C = 24881.07 (four
times the upper bound for the greatest eigenvalue, as explained in Section ). Then, we design
the quantum circuit for the Trotterized U gate using a number of 10 steps, obtaining an upper
bound for the Trotter error of ε ≈ 0.00033.

For the scaled Hamiltonian of the sulfanol molecule, we have found three estimated phases
with t decimals as expected.

ϕ1 =−0.042480468750
ϕ2 = 0.042724609375
ϕ3 = 0.199462890625

Since the sum of the eigenvalues of amatrix is equal to the trace of thematrix wemay complete
the set taking into account that Tr(H) = 0 (as it can be easily checked looking at its definition).

ϕ0 =−0.199707031250

When compared to the classically computed eigenvalues, these estimations present a differ-
ence of less than 2−12, which agrees with the theoretical accuracy.

By undoing the scale (see Section ) we finally get the estimated eigenvalues of the Hamilto-
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nian.

λ0 =−4968.925232949904
λ1 =−1056.959646128708
λ2 = 1063.0341268535858
λ4 = 4962.850752225026

4.2. Calculation of the Eigenvalues and Eigenstates Using the VQE

Analogously to the previous section, here we present our findings when addressing the diag-
onalization of the sulfanol Hamiltonian by means of the VQE algorithm (in this case, the code
can be found in [?]).

The XY-ansatz (see Section ) will consist of only two parameters to be optimized. More
precisely, the ansatz is represented by the following circuit:

RX
- π/2 • • RX

π/2
RY

π/2 • • RY
-π/2

RY
π/2

RZ
2*θ12

RY
-π/2

RX
-π/2

RZ
2*θ21

RX
π/2

For every addend of the Hamiltonian, a quantum circuit is constructed consisting of this
ansatz block plus a measure block. This measured block would contain the necessary gates for
changing the basis if needed. The circuit is then ran 1e4 to estimate each expected value of the
terms composing the total Hamiltonian.

We start from the same initial state as suggested in [?], which is:

|ϕ0⟩=
1√
2
(0,1,−1,0)

Although in the original work this state is used for a Hamiltonian different from ours (a Heisen-
berg model not taking into account the individual terms due to the applied magnetic field) we
show that even for our case a good result is still obtained. The parameters of the ansatz circuit
must be initialized too and they are chosen to be both equal to zero. As for the optimizing
process, we use the Constrained Optimization by Linear Approximation (COBYLA) method.

Finally, the result of the VQE calculation for the lowest eigenvalue is:

λ0 =−4971.007.

Which is in good agreement with the classically calculated eigenvalue.
Since we also obtain the optimized parameters of the ansatz circuit, we may reconstruct

the associated eigenvector. Using the formula for the XY-ansatz, we obtain the state:

v0 =


0

0.99999
0.00243

0


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Which is also similar to the classical result.
We attempt now to obtain higher eigenvalues via the folded spectrum method. As it was

already explained, within this procedure one must compute the expected value of (H −wI)2.
Dealingwith the square of a Hamiltonian involves a significant increase of Pauli terms. However,
for the case of a 2 spin system, this growth does not appear. After performing the calculation
for our specific Hamiltonian, it can be shown that we may decompose (H −wI)2 in the exact
same number of addends but with different coefficients:

(H−wI)2 = (−2wwδ1 +2wδ2J)Z⊗ I

+(−2wwδ2 +2wδ1J)I⊗Z

+(−2J2−2wJ)X⊗X

+(−2J2−2wJ)Y ⊗Y

+(2Wδ1wδ2−2wJ−2J2)Z⊗Z

+(3J2 +w2
δ1
+w2

δ2
+w2)I⊗ I

Thereby, for this particular case, we may perform the same quantum procedure as for the
first experiment and only modify the classical part where the total expected value is con-
structed. As for the I ⊗ I term, the expected value of the identity operator with respect to
a normalized state is trivially 1.

After successfully minimizing the cost function, the sum of w and the square root of the
result equals the eigenvalue closest to w.

Using the same the initial state |ϕ0⟩, we perform the VQE algorithm for a certain number
of w values chosen based on the upper bound of the eigenvalues of the Hamiltonian, aiming to
find the largest eigenvalue. If w is too low, the largest eigenvalue might not be the closest. On
the other hand, a value for w greater than the eigenvalue also results in a failed outcome of the
algorithm. For appropriate w values, we obtain good results with similar estimations for the
largest eigenvalues.

Thus, thanks to the folded spectrum method we find:

λ4 = 4965.511.

And for the eigenstate, using the optimized parameters, we obtain:

v4 =


0

0.02539
0.99968

0

 .

For the intermediate eigenvalues, even for a good w value, the result of the VQE algorithm is
not satisfactory if the chosen initial state is not a good approximation of the ground state of the
new (H−wI)2. On the contrary, with good initial states and suitable w values the intermediate
eigenvalues are recovered. As for the negative eigenvalue, the folded spectrummethod accepts
w < 0, so one can search for negative eigenvalues too. However, we found out that, in that case,
the negative solution must be taken in the step of calculating the square root.
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Then, the intermediate eigenvalues according to the VQE calculation are:

λ3 = 1063.264 v3 =


0.99999

0
0

−0.01027



λ2 =−1053.980 v2 =


−0.0044

0
0

0.99999


As for the approach of modifying the cost function to take into account orthogonality of

states, we were not able to obtain any good result for higher eigenvalues, which may imply that
the XY-ansatz may be not suitable within this method for our particular case. When examining
the matrix associated to the operation of the XY-ansatz over a state, it is clear to see that the
ansatz cannot transform states of type (a,0,0,b) into orthogonal states of type (0,c,d,0), or
viceversa, with this alternation being precisely present in the eigenstates of our Hamiltonian.

4.3. Obtaining the Simulated NMR Spectrum

Thanks to the VQE algorithm and the folded spectrummethod, we have obtained the full set of
eigenvalues of the Hamiltonian matrix of the sulfanol molecule, and we have also been capable
of reconstructing the corresponding eigenvectors. This information has allowed us to build
the DH and VH matrices and, after sending them to the program which calculates the FID [?]
and applying a Fourier transform, we have obtained the simulation of the 1H-NMR spectrum of
sulfanol running a simulation of our quantum algorithm in a classical computer. The resulting
simulation can be seen in Figure 3, which is fairly close to the expected one (you can see the
default simulation of the sulfanol 1H-NMR spectrum made by MestReNova in Figure 4).

5. Conclusions and Future Research

In this paper, we have shown how to simulate the 1H-NMR spectrum of a molecule's spin sys-
tem, focusing on the diagonalization of its Hamiltonian matrix of said spin system. We have
analyzed two alternative quantum algorithms, namely quantum phase estimation (QPE) and
the variational quantum eigensolver (VQE) in order to improve this task.

For QPE, we have shown how the probability of obtaining a successful outcome depends on
the initial state's overlap with actual eigenstates. Thus, a protocol for selecting these initial
states and deciding the number of attempts for each one is needed in order to optimize the
QPE process. We have also raised the issue of efficiently verifying whether the obtained result
is indeed an actual eigenvalue, as computing the determinant of the Hamiltonian matrix minus
the identity matrix can be computationally expensive for high-dimensional matrices. Addition-
ally, we have highlighted the challenge presented by degenerate eigenvalues, where QPE might
yield similar estimations for the same eigenvalue, whether due to degeneracy or probabilistic
reasons. We have suggested that access to information in the second register could potentially
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Figure 3: 1H-NMR spectrum of the sulfanol molecule using the DH and VH matrices calculated with our
quantum algorithm

Figure 4: 1H-NMR spectrum of the sulfanol molecule simulated by MestReNova

resolve this issue, a possibility which must be explored yet. It is again the difficulty or impos-
sibility of characterizing the eigenstates stored in the second register the major drawback of
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QPE as a valid candidate for our goal.
The VQE offers a different approach to the diagonalization of the Hamiltonian matrix, with

the benefits of eigenstates being obtainable and its applicability in current NISQ-era quantum
computers, but with the inherent drawbacks of performing optimization processes. We have
emphasized the critical role played by ansätze in the success of VQE while providing reference
to various ansätze [?], including the XY-ansatz [?], which has been shown to be suitable even
if the Hamiltonian includes individual terms due to an external magnetic field. Even though
VQE was originally designed to find the lowest eigenvalue and its corresponding eigenstate, it
has the potential to discover additional eigenvalues and eigenstates through the folded spec-
trum method, which applies the VQE algorithm to a modified square Hamiltonian [?]. Another
extension consists in modifying the cost function, in which the goal shifts to minimizing the
expectation value for state k+1 while ensuring that this state remains orthogonal to the pre-
viously determined states [?]. The former method may increase the measurement cost due to
the requirement of computing the expected value of a squared Hamiltonian. Although for the
simple case of a system of two spins this is not an issue, it raises a concern for larger systems
which should be addressed on further iterations of this project. Furthermore, we have shown
the importance of the initial state on which the parametric ansatz acts in order to obtain the
correct result. As for the latter extension of modifying the cost function, no satisfactory re-
sults were obtained. This may have been caused due the incapacity of the XY-ansatz to arrive
to a orthogonal state while starting from the ground state of our system. That being said,
by combining the VQE algorithm and the folded spectrum method with suitable estimations
of our Hamiltonian eigenstates, we were able to obtain the information needed to reconstruct
the sulfanol molecule 1H-NMR spectrum with a good similarity with the classical one.

Future research should focus on further optimizing these algorithms and studying their vi-
ability for larger spin systems. Good estimation of ground states for the spin system Hamilto-
nian plays a major role in the success of the VQE. Transforming our Pauli encoded Hamiltonian
into terms of Fermionic operators via the Jordan-Wigner transformation may be a promising
path. Parallel to this suitable ground state estimation, the ansatz also influences the correct
or incorrect result of the algorithm (a topic which is far from trivial), and more ansätze shall
be reviewed and explored. Also, the optimization process must also be improved in order to
tackle the mentioned issues of the local minima and the barren plateau problem.

In general, our quantum algorithms are formulated with ideal assumptions and some ad-
justments must be performed due to the current NISQ-era quantum processors. This is the
case, for example, in the designing of an ansatz for the VQE algorithm where not only the spe-
cific characteristics of the Hamiltonian matrix to be diagonalized should be taken into account,
but also the adaptation to the hardware. Specially in the context of a quantum computer being
soon available at the Galicia Supercomputing Center (CESGA), future research should focus in
the adaptation of the quantum computing procedures in practical scenarios.

Additionally, other routes for the proposed problemmay be studied beyond focusing on the
process of the diagonalization the Hamiltonian, such as directly simulating the evolution of the
spin system (see, for example, [?] and [?]).
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